ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of AI-Synthesized Speech Using Cepstral & Bispectral Statistics

68   0   0.0 ( 0 )
 نشر من قبل Arun Kumar Singh
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Arun Kumar Singh




اسأل ChatGPT حول البحث

Digital technology has made possible unimaginable applications come true. It seems exciting to have a handful of tools for easy editing and manipulation, but it raises alarming concerns that can propagate as speech clones, duplicates, or maybe deep fakes. Validating the authenticity of a speech is one of the primary problems of digital audio forensics. We propose an approach to distinguish human speech from AI synthesized speech exploiting the Bi-spectral and Cepstral analysis. Higher-order statistics have less correlation for human speech in comparison to a synthesized speech. Also, Cepstral analysis revealed a durable power component in human speech that is missing for a synthesized speech. We integrate both these analyses and propose a machine learning model to detect AI synthesized speech.

قيم البحث

اقرأ أيضاً

The recent developments in technology have re-warded us with amazing audio synthesis models like TACOTRON and WAVENETS. On the other side, it poses greater threats such as speech clones and deep fakes, that may go undetected. To tackle these alarming situations, there is an urgent need to propose models that can help discriminate a synthesized speech from an actual human speech and also identify the source of such a synthesis. Here, we propose a model based on Convolutional Neural Network (CNN) and Bidirectional Recurrent Neural Network (BiRNN) that helps to achieve both the aforementioned objectives. The temporal dependencies present in AI synthesized speech are exploited using Bidirectional RNN and CNN. The model outperforms the state-of-the-art approaches by classifying the AI synthesized audio from real human speech with an error rate of 1.9% and detecting the underlying architecture with an accuracy of 97%.
293 - Yan Jia , Zexin Cai , Murong Ma 2020
Confusing-words are commonly encountered in real-life keyword spotting applications, which causes severe degradation of performance due to complex spoken terms and various kinds of words that sound similar to the predefined keywords. To enhance the w ake word detection systems robustness on such scenarios, we investigate two data augmentation setups for training end-to-end KWS systems. One is involving the synthesized data from a multi-speaker speech synthesis system, and the other augmentation is performed by adding random noise to the acoustic feature. Experimental results show that augmentations help improve the systems robustness. Moreover, by augmenting the training set with the synthetic data generated by the multi-speaker text-to-speech system, we achieve a significant improvement regarding confusing words scenario.
Recent success of the Tacotron speech synthesis architecture and its variants in producing natural sounding multi-speaker synthesized speech has raised the exciting possibility of replacing expensive, manually transcribed, domain-specific, human spee ch that is used to train speech recognizers. The multi-speaker speech synthesis architecture can learn latent embedding spaces of prosody, speaker and style variations derived from input acoustic representations thereby allowing for manipulation of the synthesized speech. In this paper, we evaluate the feasibility of enhancing speech recognition performance using speech synthesis using two corpora from different domains. We explore algorithms to provide the necessary acoustic and lexical diversity needed for robust speech recognition. Finally, we demonstrate the feasibility of this approach as a data augmentation strategy for domain-transfer. We find that improvements to speech recognition performance is achievable by augmenting training data with synthesized material. However, there remains a substantial gap in performance between recognizers trained on human speech those trained on synthesized speech.
Speech is understood better by using visual context; for this reason, there have been many attempts to use images to adapt automatic speech recognition (ASR) systems. Current work, however, has shown that visually adapted ASR models only use images a s a regularization signal, while completely ignoring their semantic content. In this paper, we present a set of experiments where we show the utility of the visual modality under noisy conditions. Our results show that multimodal ASR models can recover words which are masked in the input acoustic signal, by grounding its transcriptions using the visual representations. We observe that integrating visual context can result in up to 35% relative improvement in masked word recovery. These results demonstrate that end-to-end multimodal ASR systems can become more robust to noise by leveraging the visual context.
With the recent advances in voice synthesis, AI-synthesized fake voices are indistinguishable to human ears and widely are applied to produce realistic and natural DeepFakes, exhibiting real threats to our society. However, effective and robust detec tors for synthesized fake voices are still in their infancy and are not ready to fully tackle this emerging threat. In this paper, we devise a novel approach, named emph{DeepSonar}, based on monitoring neuron behaviors of speaker recognition (SR) system, ie, a deep neural network (DNN), to discern AI-synthesized fake voices. Layer-wise neuron behaviors provide an important insight to meticulously catch the differences among inputs, which are widely employed for building safety, robust, and interpretable DNNs. In this work, we leverage the power of layer-wise neuron activation patterns with a conjecture that they can capture the subtle differences between real and AI-synthesized fake voices, in providing a cleaner signal to classifiers than raw inputs. Experiments are conducted on three datasets (including commercial products from Google, Baidu, etc) containing both English and Chinese languages to corroborate the high detection rates (98.1% average accuracy) and low false alarm rates (about 2% error rate) of DeepSonar in discerning fake voices. Furthermore, extensive experimental results also demonstrate its robustness against manipulation attacks (eg, voice conversion and additive real-world noises). Our work further poses a new insight into adopting neuron behaviors for effective and robust AI aided multimedia fakes forensics as an inside-out approach instead of being motivated and swayed by various artifacts introduced in synthesizing fakes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا