ﻻ يوجد ملخص باللغة العربية
Digital technology has made possible unimaginable applications come true. It seems exciting to have a handful of tools for easy editing and manipulation, but it raises alarming concerns that can propagate as speech clones, duplicates, or maybe deep fakes. Validating the authenticity of a speech is one of the primary problems of digital audio forensics. We propose an approach to distinguish human speech from AI synthesized speech exploiting the Bi-spectral and Cepstral analysis. Higher-order statistics have less correlation for human speech in comparison to a synthesized speech. Also, Cepstral analysis revealed a durable power component in human speech that is missing for a synthesized speech. We integrate both these analyses and propose a machine learning model to detect AI synthesized speech.
The recent developments in technology have re-warded us with amazing audio synthesis models like TACOTRON and WAVENETS. On the other side, it poses greater threats such as speech clones and deep fakes, that may go undetected. To tackle these alarming
Confusing-words are commonly encountered in real-life keyword spotting applications, which causes severe degradation of performance due to complex spoken terms and various kinds of words that sound similar to the predefined keywords. To enhance the w
Recent success of the Tacotron speech synthesis architecture and its variants in producing natural sounding multi-speaker synthesized speech has raised the exciting possibility of replacing expensive, manually transcribed, domain-specific, human spee
Speech is understood better by using visual context; for this reason, there have been many attempts to use images to adapt automatic speech recognition (ASR) systems. Current work, however, has shown that visually adapted ASR models only use images a
With the recent advances in voice synthesis, AI-synthesized fake voices are indistinguishable to human ears and widely are applied to produce realistic and natural DeepFakes, exhibiting real threats to our society. However, effective and robust detec