ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino Masses and Hubble Tension via a Majoron in MFV

107   0   0.0 ( 0 )
 نشر من قبل Manuel Gonzalez-Lopez
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent tension between local and early measurements of the Hubble constant can be explained in a particle physics context. A mechanism is presented where this tension is alleviated due to the presence of a Majoron, arising from the spontaneous breaking of Lepton Number. The lightness of the active neutrinos is consistently explained. Moreover, this mechanism is shown to be embeddable in the Minimal (Lepton) Flavour Violating context, providing a correct description of fermion masses and mixings, and protecting the flavour sector from large deviations from the Standard Model predictions. A QCD axion is also present to solve the Strong CP problem. The Lepton Number and the Peccei-Quinn symmetries naturally arise in the Minimal (Lepton) Flavour Violating setup and their spontaneous breaking is due to the presence of two extra scalar singlets. The Majoron phenomenology is also studied in detail. Decays of the heavy neutrinos and the invisible Higgs decay provide the strongest constraints in the model parameter space.



قيم البحث

اقرأ أيضاً

116 - Subhajit Ghosh , Rishi Khatri , 2019
New interactions of neutrinos can stop them from free streaming even after the weak interaction freeze-out. This results in a phase shift in the cosmic microwave background (CMB) acoustic peaks which can alleviate the Hubble tension. In addition, the perturbations in neutrinos do not decay away on horizon entry and contribute to metric perturbation enhancing the matter power spectrum. We demonstrate that this acoustic phase shift can be achieved using new interactions of standard left-handed neutrinos with dark matter without changing the number of effective relativistic degrees of freedom. Using Planck CMB and the WiggleZ galaxy survey $ (kle 0.12 h {rm Mpc}^{-1} ) $ data, we demonstrate that in this model the Hubble tension reduces to approximately $ 2.1 sigma$. Our model predicts potentially observable modifications of the CMB B-modes and the matter power spectrum that can be observed in future data sets.
The majoron, a neutrinophilic pseudo-Goldstone boson conventionally arising in the context of neutrino mass models, can damp neutrino free-streaming and inject additional energy density into neutrinos prior to recombination. The combination of these effects for an eV-scale mass majoron has been shown to ameliorate the outstanding $H_0$ tension, however only if one introduces additional dark radiation at the level of $Delta N_{rm eff} sim 0.5$. We show here that models of low-scale leptogenesis can naturally source this dark radiation by generating a primordial population of majorons from the decays of GeV-scale sterile neutrinos in the early Universe. Using a posterior predictive distribution conditioned on Planck2018+BAO data, we show that the value of $H_0$ observed by the SH$_0$ES collaboration is expected to occur at the level of $sim 10%$ in the primordial majoron cosmology (to be compared with $sim 0.1%$ in the case of $Lambda$CDM). This insight provides an intriguing connection between the neutrino mass mechanism, the baryon asymmetry of the Universe, and the discrepant measurements of $H_0$.
Minimal Flavour Violation (MFV) postulates that the only source of flavour changing neutral currents and CP violation, as in the Standard Model, is the CKM matrix. However it does not address the origin of fermion masses and mixing and models that do usually have a structure that goes well beyond the MFV framework. In this paper we compare the MFV predictions with those obtained in models based on spontaneously broken (horizontal) family symmetries, both Abelian and non-Abelian. The generic suppression of flavour changing processes in these models turns out to be weaker than in the MFV hypothesis. Despite this, in the supersymmetric case, the suppression may still be consistent with a solution to the hierarchy problem, with masses of superpartners below 1 TeV. A comparison of FCNC and CP violation in processes involving a variety of different family quantum numbers should be able to distinguish between various family symmetry models and models satisfying the MFV hypothesis.
We consider theories in which the generation of neutrino masses is associated with the breaking of an approximate global lepton number symmetry. In such a scenario the spectrum of light states includes the Majoron, the pseudo-Nambu Goldstone boson as sociated with the breaking of the global symmetry. For a broad range of parameters, the Majoron decays to neutrinos at late times, after the cosmic neutrinos have decoupled from the thermal bath, resulting in a secondary contribution to the cosmic neutrino background. We determine the current bounds on this scenario, and explore the possibility of directly detecting this secondary cosmic neutrino background in experiments based on neutrino capture on nuclei. For Majoron masses in the eV range or below, the neutrino flux from these decays can be comparable to that from the primary cosmic neutrino background, making it a promising target for direct detection experiments. The neutrinos from Majoron decay are redshifted by the cosmic expansion, and exhibit a characteristic energy spectrum that depends on both the Majoron mass and its lifetime. For Majoron lifetimes of order the age of the universe or larger, there is also a monochromatic contribution to the neutrino flux from Majoron decays in the Milky Way that can be comparable to the diffuse extragalactic flux. We find that for Majoron masses in the eV range, direct detection experiments based on neutrino capture on tritium, such as PTOLEMY, will be sensitive to this scenario with 100 gram-years of data. In the event of a signal, the galactic and extragalactic components can be distinguished on the basis of their distinct energy distributions, and also by using directional information obtained by polarizing the target nuclei.
155 - H. Fritzsch 2009
We discuss first the flavor mixing of the quarks, using the texture zero mass matrices. Then we study a similar model for the mass matrices of the leptons. We are able to relate the mass eigenvalues of the charged leptons and of the neutrinos to the mixing angles and can predict the masses of the neutrinos. We find a normal hierarchy - the masses are 0.004 eV, 0.01 eV and 0.05 eV. The atmospheric mixing angle is given by the mass ratios of the charged leptons and the neutrinos. we find about 40 degrees, consistent with the experiments. The mixing element, connecting the first neutrino wit the electron, is predicted to be 0.05. This prediction can soon be checked by the Daya Bay experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا