ﻻ يوجد ملخص باللغة العربية
Capturing global contextual representations by exploiting long-range pixel-pixel dependencies has shown to improve semantic segmentation performance. However, how to do this efficiently is an open question as current approaches of utilising attention schemes or very deep models to increase the models field of view, result in complex models with large memory consumption. Inspired by recent work on graph neural networks, we propose the Self-Constructing Graph (SCG) module that learns a long-range dependency graph directly from the image and uses it to propagate contextual information efficiently to improve semantic segmentation. The module is optimised via a novel adaptive diagonal enhancement method and a variational lower bound that consists of a customized graph reconstruction term and a Kullback-Leibler divergence regularization term. When incorporated into a neural network (SCG-Net), semantic segmentation is performed in an end-to-end manner and competitive performance (mean F1-scores of 92.0% and 89.8% respectively) on the publicly available ISPRS Potsdam and Vaihingen datasets is achieved, with much fewer parameters, and at a lower computational cost compared to related pure convolutional neural network (CNN) based models.
We propose a novel architecture called the Multi-view Self-Constructing Graph Convolutional Networks (MSCG-Net) for semantic segmentation. Building on the recently proposed Self-Constructing Graph (SCG) module, which makes use of learnable latent var
We introduce SketchGNN, a convolutional graph neural network for semantic segmentation and labeling of freehand vector sketches. We treat an input stroke-based sketch as a graph, with nodes representing the sampled points along input strokes and edge
Weakly supervised semantic segmentation is receiving great attention due to its low human annotation cost. In this paper, we aim to tackle bounding box supervised semantic segmentation, i.e., training accurate semantic segmentation models using bound
Semantic segmentation is pixel-wise classification which retains critical spatial information. The feature map reuse has been commonly adopted in CNN based approaches to take advantage of feature maps in the early layers for the later spatial reconst
In this paper, we seek reasons for the two major failure cases in Semantic Segmentation (SS): 1) missing small objects or minor object parts, and 2) mislabeling minor parts of large objects as wrong classes. We have an interesting finding that Failur