ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Method for Parameter Inference of Nonlinear ODEs with Partial Observations

122   0   0.0 ( 0 )
 نشر من قبل Shixin Xu
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Parameter inference of dynamical systems is a challenging task faced by many researchers and practitioners across various fields. In many applications, it is common that only limited variables are observable. In this paper, we propose a method for parameter inference of a system of nonlinear coupled ODEs with partial observations. Our method combines fast Gaussian process based gradient matching (FGPGM) and deterministic optimization algorithms. By using initial values obtained by Bayesian steps with low sampling numbers, our deterministic optimization algorithm is both accurate and efficient.

قيم البحث

اقرأ أيضاً

288 - Kangjie Zhou , Jinzhu Jia 2021
Propensity score methods have been shown to be powerful in obtaining efficient estimators of average treatment effect (ATE) from observational data, especially under the existence of confounding factors. When estimating, deciding which type of covari ates need to be included in the propensity score function is important, since incorporating some unnecessary covariates may amplify both bias and variance of estimators of ATE. In this paper, we show that including additional instrumental variables that satisfy the exclusion restriction for outcome will do harm to the statistical efficiency. Also, we prove that, controlling for covariates that appear as outcome predictors, i.e. predict the outcomes and are irrelevant to the exposures, can help reduce the asymptotic variance of ATE estimation. We also note that, efficiently estimating the ATE by non-parametric or semi-parametric methods require the estimated propensity score function, as described in Hirano et al. (2003)cite{Hirano2003}. Such estimation procedure usually asks for many regularity conditions, Rothe (2016)cite{Rothe2016} also illustrated this point and proposed a known propensity score (KPS) estimator that requires mild regularity conditions and is still fully efficient. In addition, we introduce a linearly modified (LM) estimator that is nearly efficient in most general settings and need not estimation of the propensity score function, hence convenient to calculate. The construction of this estimator borrows idea from the interaction estimator of Lin (2013)cite{Lin2013}, in which regression adjustment with interaction terms are applied to deal with data arising from a completely randomized experiment. As its name suggests, the LM estimator can be viewed as a linear modification on the IPW estimator using known propensity scores. We will also investigate its statistical properties both analytically and numerically.
81 - Baoluo Sun , Zhiqiang Tan 2020
Consider the problem of estimating the local average treatment effect with an instrument variable, where the instrument unconfoundedness holds after adjusting for a set of measured covariates. Several unknown functions of the covariates need to be es timated through regression models, such as instrument propensity score and treatment and outcome regression models. We develop a computationally tractable method in high-dimensional settings where the numbers of regression terms are close to or larger than the sample size. Our method exploits regularized calibrated estimation, which involves Lasso penalties but carefully chosen loss functions for estimating coefficient vectors in these regression models, and then employs a doubly robust estimator for the treatment parameter through augmented inverse probability weighting. We provide rigorous theoretical analysis to show that the resulting Wald confidence intervals are valid for the treatment parameter under suitable sparsity conditions if the instrument propensity score model is correctly specified, but the treatment and outcome regression models may be misspecified. For existing high-dimensional methods, valid confidence intervals are obtained for the treatment parameter if all three models are correctly specified. We evaluate the proposed methods via extensive simulation studies and an empirical application to estimate the returns to education.
196 - Andrew Ying , Wang Miao , Xu Shi 2021
A standard assumption for causal inference about the joint effects of time-varying treatment is that one has measured sufficient covariates to ensure that within covariate strata, subjects are exchangeable across observed treatment values, also known as sequential randomization assumption (SRA). SRA is often criticized as it requires one to accurately measure all confounders. Realistically, measured covariates can rarely capture all confounders with certainty. Often covariate measurements are at best proxies of confounders, thus invalidating inferences under SRA. In this paper, we extend the proximal causal inference (PCI) framework of Miao et al. (2018) to the longitudinal setting under a semiparametric marginal structural mean model (MSMM). PCI offers an opportunity to learn about joint causal effects in settings where SRA based on measured time-varying covariates fails, by formally accounting for the covariate measurements as imperfect proxies of underlying confounding mechanisms. We establish nonparametric identification with a pair of time-varying proxies and provide a corresponding characterization of regular and asymptotically linear estimators of the parameter indexing the MSMM, including a rich class of doubly robust estimators, and establish the corresponding semiparametric efficiency bound for the MSMM. Extensive simulation studies and a data application illustrate the finite sample behavior of proposed methods.
We consider predictive inference using a class of temporally dependent Dirichlet processes driven by Fleming--Viot diffusions, which have a natural bearing in Bayesian nonparametrics and lend the resulting family of random probability measures to ana lytical posterior analysis. Formulating the implied statistical model as a hidden Markov model, we fully describe the predictive distribution induced by these Fleming--Viot-driven dependent Dirichlet processes, for a sequence of observations collected at a certain time given another set of draws collected at several previous times. This is identified as a mixture of Polya urns, whereby the observations can be values from the baseline distribution or copies of previous draws collected at the same time as in the usual P`olya urn, or can be sampled from a random subset of the data collected at previous times. We characterise the time-dependent weights of the mixture which select such subsets and discuss the asymptotic regimes. We describe the induced partition by means of a Chinese restaurant process metaphor with a conveyor belt, whereby new customers who do not sit at an occupied table open a new table by picking a dish either from the baseline distribution or from a time-varying offer available on the conveyor belt. We lay out explicit algorithms for exact and approximate posterior sampling of both observations and partitions, and illustrate our results on predictive problems with synthetic and real data.
There is a wide range of applications where the local extrema of a function are the key quantity of interest. However, there is surprisingly little work on methods to infer local extrema with uncertainty quantification in the presence of noise. By vi ewing the function as an infinite-dimensional nuisance parameter, a semiparametric formulation of this problem poses daunting challenges, both methodologically and theoretically, as (i) the number of local extrema may be unknown, and (ii) the induced shape constraints associated with local extrema are highly irregular. In this article, we address these challenges by suggesting an encompassing strategy that eliminates the need to specify the number of local extrema, which leads to a remarkably simple, fast semiparametric Bayesian approach for inference on local extrema. We provide closed-form characterization of the posterior distribution and study its large sample behaviors under this encompassing regime. We show a multi-modal Bernstein-von Mises phenomenon in which the posterior measure converges to a mixture of Gaussians with the number of components matching the underlying truth, leading to posterior exploration that accounts for multi-modality. We illustrate the method through simulations and a real data application to event-related potential analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا