ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultragraph algebras via labelled graph groupoids, with applications to generalized uniqueness theorems

89   0   0.0 ( 0 )
 نشر من قبل Gilles de Castro
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An ultragraph gives rise to a labelled graph with some particular properties. In this paper we describe the algebras associated to such labelled graphs as groupoid algebras. More precisely, we show that the known groupoid algebra realization of ultragraph C*-algebras is only valid for ultragraphs for which the range of each edge is finite, and we extend this realization to any ultragraph (including ultragraphs with sinks). Using our machinery, we characterize the shift space associated to an ultragraph as the tight spectrum of the inverse semigroup associated to the ultragraph (viewed as a labelled graph). Furthermore, in the purely algebraic setting, we show that the algebraic partial action used to describe an ultragraph Leavitt path algebra as a partial skew group ring is equivalent to the dual of a topological partial action, and we use this to describe ultragraph Leavitt path algebras as Steinberg algebras. Finally, we prove generalized uniqueness theorems for both ultragraph C*-algebras and ultragraph Leavitt path algebras and characterize their abelian core subalgebras.

قيم البحث

اقرأ أيضاً

A Leavitt labelled path algebra over a commutative unital ring is associated with a labelled space, generalizing Leavitt path algebras associated with graphs and ultragraphs as well as torsion-free commutative algebras generated by idempotents. We sh ow that Leavitt labelled path algebras can be realized as partial skew group rings, Steinberg algebras, and Cuntz-Pimsner algebras. Via these realizations we obtain generalized uniqueness theorems, a description of diagonal preserving isomorphisms and we characterize simplicity of Leavitt labelled path algebras. In addition, we prove that a large class of partial skew group rings can be realized as Leavitt labelled path algebras.
We give a concise introduction to (discrete) algebras arising from etale groupoids, (aka Steinberg algebras) and describe their close relationship with groupoid C*-algebras. Their connection to partial group rings via inverse semigroups also explored.
A duality theorem of the bounded derived category of quasi-finite comodules over an artinian coalgebra is established. Let $A$ be a noetherian complete basic semiperfect algebra over an algebraically closed field, and $C$ be its dual coalgebra. If $A $ is Artin-Schelter regular, then the local cohomology of $A$ is isomorphic to a shift of twisted bimodule ${}_1C_{sigma^*}$ with $sigma$ a coalgebra automorphism. This yields that the balanced dualinzing complex of $A$ is a shift of the twisted bimodule ${}_{sigma^*}A_1$. If $sigma$ is an inner automorphism, then $A$ is Calabi-Yau.
We investigate Lie algebras whose Lie bracket is also an associative or cubic associative multiplication to characterize the class of nilpotent Lie algebras with a nilindex equal to 2 or 3. In particular we study the class of 2-step nilpotent Lie alg ebras, their deformations and we compute the cohomology which parametrize the deformations in this class.
Potential algebras feature in the minimal model program and noncommutative resolution of singularities, and the important cases are when they are finite dimensional, or of linear growth. We develop techniques, involving Grobner basis theory and gener alized Golod-Shafarevich type theorems for potential algebras, to determine finiteness conditions in terms of the potential. We consider two-generated potential algebras. Using Grobner bases techniques and arguing in terms of associated truncated algebra we prove that they cannot have dimension smaller than $8$. This answers a question of Wemyss cite{Wemyss}, related to the geometric argument of Toda cite{T}. We derive from the improved version of the Golod-Shafarevich theorem, that if the potential has only terms of degree 5 or higher, then the potential algebra is infinite dimensional. We prove, that potential algebra for any homogeneous potential of degree $ngeq 3$ is infinite dimensional. The proof includes a complete classification of all potentials of degree 3. Then we introduce a certain version of Koszul complex, and prove that in the class ${cal P}_n$ of potential algebras with homogeneous potential of degree $n+1geq 4$, the minimal Hilbert series is $H_n=frac{1}{1-2t+2t^n-t^{n+1}}$, so they are all infinite dimensional. Moreover, growth could be polynomial (but non-linear) for the potential of degree 4, and is always exponential for potential of degree starting from 5. For one particular type of potential we prove a conjecture by Wemyss, which relates the difference of dimensions of potential algebra and its abelianization with Gopakumar-Vafa invariants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا