ترغب بنشر مسار تعليمي؟ اضغط هنا

The percolation phase transition and statistical multifragmentation in finite systems

79   0   0.0 ( 0 )
 نشر من قبل Janusz Brzychczyk
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The cumulant ratios up to fourth order of the $Z$ distributions of the largest fragment in spectator fragmentation following $^{107,124}$Sn+Sn and $^{124}$La+Sn collisions at 600 MeV/nucleon have been investigated. They are found to exhibit the signatures of a second-order phase transition established with cubic bond percolation and previously observed in the ALADIN experimental data for fragmentation of $^{197}$Au projectiles at similar energies. The deduced pseudocritical points are found to be only weakly dependent on the $A/Z$ ratio of the fragmenting spectator source. The same holds for the corresponding chemical freeze-out temperatures of close to 6 MeV. The experimental cumulant distributions are quantitatively reproduced with the Statistical Multifragmentation Model and parameters used to describe the experimental fragment multiplicities, isotope distributions and their correlations with impact-parameter related observables in these reactions. The characteristic coincidence of the zero transition of the skewness with the minimum of the kurtosis excess appears to be a generic property of statistical models and is found to coincide with the maximum of the heat capacity in the canonical thermodynamic fragmentation model.



قيم البحث

اقرأ أيضاً

A systematic analysis of the moments of the fragment size distribution has been carried out for the multifragmentation (MF)of 1A GeV Au, La, and Kr on carbon. The breakup of Au and La is consistent with a continuous thermal phase transition. The data indicate that the excitation energy per nucleon and isotopic temperature at the critical point decrease with increasing system size. This trend is attributed primarily to the increasing Coulomb energy with finite size effects playing a smaller role.
197 - Bernard Borderie 2010
Recent important progress on the knowledge of multifragmentation and phase transition for hot nuclei, thanks to the high detection quality of the INDRA array, is reported. It concerns i) the radial collective energies involved in hot fragmenting nucl ei/sources produced in central and semi- peripheral collisions and their influence on the observed fragment partitions, ii) a better knowledge of freeze-out properties obtained by means of a simulation based on all the available experimental information and iii) the quantitative study of the bimodal behaviour of the heaviest fragment distribution for fragmenting hot heavy quasi-projectiles which allows the extraction, for the first time, of an estimate of the latent heat of the phase transition.
135 - B. Borderie 2008
This review article is focused on the tremendous progress realized during the last fifteen years in the understanding of multifragmentation and its relationship to the liquid-gas phase diagram of nuclei and nuclear matter. The explosion of the whole nucleus, early predicted by Bohr [N. Bohr, Nature 137 (1936) 351], is a very complex and rich subject which continues to fascinate nuclear physicists as well as theoreticians who extend the thermodynamics of phase transitions to finite systems.
109 - Bernard Borderie 2010
Recent advancement on the knowledge of multifragmentation and phase transition for hot nuclei is reported. It concerns i) the influence of radial collective energy on fragment partitions and the derivation of general properties of partitions in prese nce of such a collective energy, ii) a better knowledge of freeze-out properties obtained by means of a simulation based on all the available experimental information and iii) the quantitative study of the bimodal behaviour of the heaviest fragment charge distribution for fragmenting hot heavy quasi-projectiles which allows, for the first time, to estimate the latent heat of the phase transition.
A phase transition signature associated with cumulants of the largest fragment size distribution has been identified in statistical multifragmentation models and examined in analysis of the ALADIN S254 data on fragmentation of neutron-poor and neutro n-rich projectiles. Characteristics of the transition point indicated by this signature are weakly dependent on the A/Z ratio of the fragmenting spectator source. In particular, chemical freeze-out temperatures are estimated within the range 5.9 to 6.5 MeV. The experimental results are well reproduced by the SMM model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا