ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracing a phase transition with fluctuations of the largest fragment size: Statistical multifragmentation models and the ALADIN S254 data

133   0   0.0 ( 0 )
 نشر من قبل Janusz Brzychczyk
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A phase transition signature associated with cumulants of the largest fragment size distribution has been identified in statistical multifragmentation models and examined in analysis of the ALADIN S254 data on fragmentation of neutron-poor and neutron-rich projectiles. Characteristics of the transition point indicated by this signature are weakly dependent on the A/Z ratio of the fragmenting spectator source. In particular, chemical freeze-out temperatures are estimated within the range 5.9 to 6.5 MeV. The experimental results are well reproduced by the SMM model.

قيم البحث

اقرأ أيضاً

253 - D. Gruyer 2012
Distributions of the largest fragment charge, Zmax, in multifragmentation reactions around the Fermi energy can be decomposed into a sum of a Gaussian and a Gumbel distribution, whereas at much higher or lower energies one or the other distribution i s asymptotically dominant. We demonstrate the same generic behavior for the largest cluster size in critical aggregation models for small systems, in or out of equilibrium, around the critical point. By analogy with the time-dependent irreversible aggregation model, we infer that Zmax distributions are characteristic of the multifragmentation time-scale, which is largely determined by the onset of radial expansion in this energy range.
99 - B. Borderie 2008
This review article is focused on the tremendous progress realized during the last fifteen years in the understanding of multifragmentation and its relationship to the liquid-gas phase diagram of nuclei and nuclear matter. The explosion of the whole nucleus, early predicted by Bohr [N. Bohr, Nature 137 (1936) 351], is a very complex and rich subject which continues to fascinate nuclear physicists as well as theoreticians who extend the thermodynamics of phase transitions to finite systems.
The cumulant ratios up to fourth order of the $Z$ distributions of the largest fragment in spectator fragmentation following $^{107,124}$Sn+Sn and $^{124}$La+Sn collisions at 600 MeV/nucleon have been investigated. They are found to exhibit the signa tures of a second-order phase transition established with cubic bond percolation and previously observed in the ALADIN experimental data for fragmentation of $^{197}$Au projectiles at similar energies. The deduced pseudocritical points are found to be only weakly dependent on the $A/Z$ ratio of the fragmenting spectator source. The same holds for the corresponding chemical freeze-out temperatures of close to 6 MeV. The experimental cumulant distributions are quantitatively reproduced with the Statistical Multifragmentation Model and parameters used to describe the experimental fragment multiplicities, isotope distributions and their correlations with impact-parameter related observables in these reactions. The characteristic coincidence of the zero transition of the skewness with the minimum of the kurtosis excess appears to be a generic property of statistical models and is found to coincide with the maximum of the heat capacity in the canonical thermodynamic fragmentation model.
268 - Bernard Borderie 2010
The role played by the heaviest fragment in partitions of multifragmenting hot nuclei is emphasized. Its size/charge distribution (mean value, fluctuations and shape) gives information on properties of fragmenting nuclei and on the associated phase transition.
113 - S.R. Souza , R. Donangelo 2020
We study the size properties of the largest intermediate mass fragments in each partition mode, produced in the prompt statistical breakup of a thermally equilibrated nuclear source, at different temperatures. We find that an appreciable amount of ev ents have primary intermediate mass fragments of similar sizes. Our results suggest that, depending on the temperature of the fragmenting source, their production may be much larger than what would be expected from considerations based on purely combinatorial arrangements of the nucleons in the fragmenting system. We also find that the isospin composition of the largest fragments is sensitive to their rank size within the event. We suggest that experimental analyses, conceived to reconstruct the breakup configuration, should be employed to investigate the validity of our findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا