ﻻ يوجد ملخص باللغة العربية
We have studied the anomalous Hall effect (AHE) in strained thin films of the frustrated antiferromagnet Mn$_{3}$NiN. The AHE does not follow the conventional relationships with magnetization or longitudinal conductivity and is enhanced relative to that expected from the magnetization in the antiferromagnetic state below $T_{mathrm{N}} = 260$,K. This enhancement is consistent with origins from the non-collinear antiferromagnetic structure, as the latter is closely related to that found in Mn$_{3}$Ir and Mn$_{3}$Pt where a large AHE is induced by the Berry curvature. As the Berry phase induced AHE should scale with spin-orbit coupling, yet larger AHE may be found in other members of the chemically flexible Mn$_{3}A$N structure.
We report the anomalous Hall effect (AHE) in antiperovskite Mn$_{3}$NiN with substantial doping of Cu on the Ni site (i.e. Mn$_{3}$Ni$_{1-x}$Cu$_{x}$N), which stabilizes a noncollinear antiferromagnetic (AFM) order compatible with the AHE. Observed o
We report on Cr doping effect in Mn3Sn polycrystalline films with both uniform and modulation doping. It is found that Cr doping with low concentration does not cause notable changes to the structural and magnetic properties of Mn3Sn, but it signific
Mn$_{3-x}$Ga (x = 0.1, 0.4, 0.7) thin films on MgO and SrTiO$_3$ substrates were investigated with magnetic anisotropy perpendicular to the film plane. An anomalous Hall-effect was observed for the tetragonal distorted lattice in the crystallographic
It is well established that the anomalous Hall effect that a ferromagnet displays scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. Here we show that the non-collinear
Ferroic domain walls (DWs) create different symmetries and ordered states compared with those in single-domain bulk materials. In particular, the DWs of an antiferromagnet (AFM) with non-coplanar spin structure have a distinct symmetry that cannot be