ترغب بنشر مسار تعليمي؟ اضغط هنا

Speaker Representation Learning using Global Context Guided Channel and Time-Frequency Transformations

61   0   0.0 ( 0 )
 نشر من قبل Wei Xia
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, we propose the global context guided channel and time-frequency transformations to model the long-range, non-local time-frequency dependencies and channel variances in speaker representations. We use the global context information to enhance important channels and recalibrate salient time-frequency locations by computing the similarity between the global context and local features. The proposed modules, together with a popular ResNet based model, are evaluated on the VoxCeleb1 dataset, which is a large scale speaker verification corpus collected in the wild. This lightweight block can be easily incorporated into a CNN model with little additional computational costs and effectively improves the speaker verification performance compared to the baseline ResNet-LDE model and the Squeeze&Excitation block by a large margin. Detailed ablation studies are also performed to analyze various factors that may impact the performance of the proposed modules. We find that by employing the proposed L2-tf-GTFC transformation block, the Equal Error Rate decreases from 4.56% to 3.07%, a relative 32.68% reduction, and a relative 27.28% improvement in terms of the DCF score. The results indicate that our proposed global context guided transformation modules can efficiently improve the learned speaker representations by achieving time-frequency and channel-wise feature recalibration.

قيم البحث

اقرأ أيضاً

Deep generative models have recently achieved impressive performance in speech and music synthesis. However, compared to the generation of those domain-specific sounds, generating general sounds (such as siren, gunshots) has received less attention, despite their wide applications. In previous work, the SampleRNN method was considered for sound generation in the time domain. However, SampleRNN is potentially limited in capturing long-range dependencies within sounds as it only back-propagates through a limited number of samples. In this work, we propose a method for generating sounds via neural discrete time-frequency representation learning, conditioned on sound classes. This offers an advantage in efficiently modelling long-range dependencies and retaining local fine-grained structures within sound clips. We evaluate our approach on the UrbanSound8K dataset, compared to SampleRNN, with the performance metrics measuring the quality and diversity of generated sounds. Experimental results show that our method offers comparable performance in quality and significantly better performance in diversity.
Despite speaker verification has achieved significant performance improvement with the development of deep neural networks, domain mismatch is still a challenging problem in this field. In this study, we propose a novel framework to disentangle speak er-related and domain-specific features and apply domain adaptation on the speaker-related feature space solely. Instead of performing domain adaptation directly on the feature space where domain information is not removed, using disentanglement can efficiently boost adaptation performance. To be specific, our models input speech from the source and target domains is first encoded into different latent feature spaces. The adversarial domain adaptation is conducted on the shared speaker-related feature space to encourage the property of domain-invariance. Further, we minimize the mutual information between speaker-related and domain-specific features for both domains to enforce the disentanglement. Experimental results on the VOiCES dataset demonstrate that our proposed framework can effectively generate more speaker-discriminative and domain-invariant speaker representations with a relative 20.3% reduction of EER compared to the original ResNet-based system.
Location of non-stationary forced oscillation (FO) sources can be a challenging task, especially in cases under resonance condition with natural system modes, where the magnitudes of the oscillations could be greater in places far from the source. Th erefore, it is of interest to construct a global time-frequency (TF) representation (TFR) of the system, which can capture the oscillatory components present in the system. In this paper we develop a systematic methodology for frequency identification and component filtering of non-stationary power system forced oscillations (FO) based on multi-channel TFR. The frequencies of the oscillatory components are identified on the TF plane by applying a modified ridge estimation algorithm. Then, filtering of the components is carried out on the TF plane applying the anti-transform functions over the individual TFRs around the identified ridges. This step constitutes an initial stage for the application of the Dissipating Energy Flow (DEF) method used to locate FO sources. Besides, we compare three TF approaches: short-time Fourier transform (STFT), STFT-based synchrosqueezing transform (FSST) and second order FSST (FSST2). Simulated signals and signals from real operation are used to show that the proposed method provides a systematic framework for identification and filtering of power systems non-stationary forced oscillations.
In this paper, we address the problem of speaker recognition in challenging acoustic conditions using a novel method to extract robust speaker-discriminative speech representations. We adopt a recently proposed unsupervised adversarial invariance arc hitecture to train a network that maps speaker embeddings extracted using a pre-trained model onto two lower dimensional embedding spaces. The embedding spaces are learnt to disentangle speaker-discriminative information from all other information present in the audio recordings, without supervision about the acoustic conditions. We analyze the robustness of the proposed embeddings to various sources of variability present in the signal for speaker verification and unsupervised clustering tasks on a large-scale speaker recognition corpus. Our analyses show that the proposed system substantially outperforms the baseline in a variety of challenging acoustic scenarios. Furthermore, for the task of speaker diarization on a real-world meeting corpus, our system shows a relative improvement of 36% in the diarization error rate compared to the state-of-the-art baseline.
Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many i nstitutes from building multi-speaker TTS systems of great performance. In this work, we propose a semi-supervised learning approach for multi-speaker TTS. A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation. The experiment results demonstrate that with only an hour of paired speech data, no matter the paired data is from multiple speakers or a single speaker, the proposed model can generate intelligible speech in different voices. We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy. In addition, our analysis reveals that different speaker characteristics of the paired data have an impact on the effectiveness of semi-supervised TTS.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا