ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Bilevel Model: Fast and Optimal Algorithm with Theoretical Guarantee

165   0   0.0 ( 0 )
 نشر من قبل Junyi Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to the hierarchical structure of many machine learning problems, bilevel programming is becoming more and more important recently, however, the complicated correlation between the inner and outer problem makes it extremely challenging to solve. Although several intuitive algorithms based on the automatic differentiation have been proposed and obtained success in some applications, not much attention has been paid to finding the optimal formulation of the bilevel model. Whether there exists a better formulation is still an open problem. In this paper, we propose an improved bilevel model which converges faster and better compared to the current formulation. We provide theoretical guarantee and evaluation results over two tasks: Data Hyper-Cleaning and Hyper Representation Learning. The empirical results show that our model outperforms the current bilevel model with a great margin. emph{This is a concurrent work with citet{liu2020generic} and we submitted to ICML 2020. Now we put it on the arxiv for record.}


قيم البحث

اقرأ أيضاً

102 - Kaiyi Ji 2021
Bilevel optimization has become a powerful framework in various machine learning applications including meta-learning, hyperparameter optimization, and network architecture search. There are generally two classes of bilevel optimization formulations for machine learning: 1) problem-based bilevel optimization, whose inner-level problem is formulated as finding a minimizer of a given loss function; and 2) algorithm-based bilevel optimization, whose inner-level solution is an output of a fixed algorithm. For the first class, two popular types of gradient-based algorithms have been proposed for hypergradient estimation via approximate implicit differentiation (AID) and iterative differentiation (ITD). Algorithms for the second class include the popular model-agnostic meta-learning (MAML) and almost no inner loop (ANIL). However, the convergence rate and fundamental limitations of bilevel optimization algorithms have not been well explored. This thesis provides a comprehensive convergence rate analysis for bilevel algorithms in the aforementioned two classes. We further propose principled algorithm designs for bilevel optimization with higher efficiency and scalability. For the problem-based formulation, we provide a convergence rate analysis for AID- and ITD-based bilevel algorithms. We then develop acceleration bilevel algorithms, for which we provide shaper convergence analysis with relaxed assumptions. We also provide the first lower bounds for bilevel optimization, and establish the optimality by providing matching upper bounds under certain conditions. We finally propose new stochastic bilevel optimization algorithms with lower complexity and higher efficiency in practice. For the algorithm-based formulation, we develop a theoretical convergence for general multi-step MAML and ANIL, and characterize the impact of parameter selections and loss geometries on the their complexities.
This paper proposes a new algorithm -- the underline{S}ingle-timescale Dounderline{u}ble-momentum underline{St}ochastic underline{A}pproxunderline{i}matiounderline{n} (SUSTAIN) -- for tackling stochastic unconstrained bilevel optimization problems. W e focus on bilevel problems where the lower level subproblem is strongly-convex and the upper level objective function is smooth. Unlike prior works which rely on emph{two-timescale} or emph{double loop} techniques, we design a stochastic momentum-assisted gradient estimator for both the upper and lower level updates. The latter allows us to control the error in the stochastic gradient updates due to inaccurate solution to both subproblems. If the upper objective function is smooth but possibly non-convex, we show that {aname}~requires $mathcal{O}(epsilon^{-3/2})$ iterations (each using ${cal O}(1)$ samples) to find an $epsilon$-stationary solution. The $epsilon$-stationary solution is defined as the point whose squared norm of the gradient of the outer function is less than or equal to $epsilon$. The total number of stochastic gradient samples required for the upper and lower level objective functions matches the best-known complexity for single-level stochastic gradient algorithms. We also analyze the case when the upper level objective function is strongly-convex.
Massive access is a critical design challenge of Internet of Things (IoT) networks. In this paper, we consider the grant-free uplink transmission of an IoT network with a multiple-antenna base station (BS) and a large number of single-antenna IoT dev ices. Taking into account the sporadic nature of IoT devices, we formulate the joint activity detection and channel estimation (JADCE) problem as a group-sparse matrix estimation problem. This problem can be solved by applying the existing compressed sensing techniques, which however either suffer from high computational complexities or lack of algorithm robustness. To this end, we propose a novel algorithm unrolling framework based on the deep neural network to simultaneously achieve low computational complexity and high robustness for solving the JADCE problem. Specifically, we map the original iterative shrinkage thresholding algorithm (ISTA) into an unrolled recurrent neural network (RNN), thereby improving the convergence rate and computational efficiency through end-to-end training. Moreover, the proposed algorithm unrolling approach inherits the structure and domain knowledge of the ISTA, thereby maintaining the algorithm robustness, which can handle non-Gaussian preamble sequence matrix in massive access. With rigorous theoretical analysis, we further simplify the unrolled network structure by reducing the redundant training parameters. Furthermore, we prove that the simplified unrolled deep neural network structures enjoy a linear convergence rate. Extensive simulations based on various preamble signatures show that the proposed unrolled networks outperform the existing methods in terms of the convergence rate, robustness and estimation accuracy.
264 - Shaojie Li , Yong Liu 2021
Generalization performance of stochastic optimization stands a central place in learning theory. In this paper, we investigate the excess risk performance and towards improved learning rates for two popular approaches of stochastic optimization: empi rical risk minimization (ERM) and stochastic gradient descent (SGD). Although there exists plentiful generalization analysis of ERM and SGD for supervised learning, current theoretical understandings of ERM and SGD either have stronger assumptions in convex learning, e.g., strong convexity, or show slow rates and less studied in nonconvex learning. Motivated by these problems, we aim to provide improved rates under milder assumptions in convex learning and derive faster rates in nonconvex learning. It is notable that our analysis span two popular theoretical viewpoints: emph{stability} and emph{uniform convergence}. Specifically, in stability regime, we present high probability learning rates of order $mathcal{O} (1/n)$ w.r.t. the sample size $n$ for ERM and SGD with milder assumptions in convex learning and similar high probability rates of order $mathcal{O} (1/n)$ in nonconvex learning, rather than in expectation. Furthermore, this type of learning rate is improved to faster order $mathcal{O} (1/n^2)$ in uniform convergence regime. To our best knowledge, for ERM and SGD, the learning rates presented in this paper are all state-of-the-art.
This paper presents the intrinsic limit determination algorithm (ILD Algorithm), a novel technique to determine the best possible performance, measured in terms of the AUC (area under the ROC curve) and accuracy, that can be obtained from a specific dataset in a binary classification problem with categorical features {sl regardless} of the model used. This limit, namely the Bayes error, is completely independent of any model used and describes an intrinsic property of the dataset. The ILD algorithm thus provides important information regarding the prediction limits of any binary classification algorithm when applied to the considered dataset. In this paper the algorithm is described in detail, its entire mathematical framework is presented and the pseudocode is given to facilitate its implementation. Finally, an example with a real dataset is given.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا