ترغب بنشر مسار تعليمي؟ اضغط هنا

Kenfack Zyczkowski indicator of nonclassicality for two non-equivalent representations of Wigner function of qutrit

120   0   0.0 ( 0 )
 نشر من قبل Vahagn Abgaryan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Wigner function of a finite-dimensional system can be constructed via dual pairing of a density matrix with the Stratonovich-Weyl kernel. Following Kenfack and $dot{text{Z}}$yczkowski, we consider the indicator of nonclassicality of a finite-dimensional quantum system which depends on the volume of the negative part of the Wigner function. This indicator is defined over the unitary non-equivalent classes of quantum states, i.e. represents an invariant, but since for a given quantum system there is no unique Wigner function it turns to be sensitive to the choice of representations for the Wigner function. Based on the explicit parameterization of the moduli space of the Wigner functions, we compute the corresponding Kenfack-$dot{text{Z}}$yczkowski indicators of a 3-level system for degenerate, unitary non-equivalent Stratonovich-Weyl kernels.

قيم البحث

اقرأ أيضاً

A measure of nonclassicality of quantum states based on the volume of the negative part of the Wigner function is proposed. We analyze this quantity for Fock states, squeezed displaced Fock states and cat-like states defined as coherent superposition of two Gaussian wave packets.
We present a new quasi-probability distribution function for ensembles of spin-half particles or qubits that has many properties in common with Wigners original function for systems of continuous variables. We show that this function provides clear a nd intuitive graphical representation of a wide variety of states, including Fock states, spin-coherent states, squeezed states, superpositions and statistical mixtures. Unlike previous attempts to represent ensembles of spins/qubits, this distribution is capable of simultaneously representing several angular momentum shells.
It is commonly accepted that a deviation of the Wigner quasiprobability distribution of a quantum state from a proper statistical distribution signifies its nonclassicality. Following this ideology, we introduce the global indicator $mathcal{Q}_N$ fo r quantification of classicality-quantumness correspondence in the form of the functional on the orbit space $mathcal{O}[mathfrak{P}_N]$ of the $SU(N)$ group adjoint action on the state space $mathfrak{P}_N$ of an $N$-dimensional quantum system. The indicator $mathcal{Q}_{N}$ is defined as a relative volume of a subspace $mathcal{O}[mathfrak{P}^{(+)}_N] subset mathcal{O}[mathfrak{P}_N],,$ where the Wigner quasiprobability distribution is positive. An algebraic structure of $mathcal{O}[mathfrak{P}^{(+)}_N]$ is revealed and exemplified by a single qubit $(N=2)$ and single qutrit $(N=3)$. For the Hilbert-Schmidt ensemble of qutrits the dependence of the global indicator on the moduli parameter of the Wigner quasiprobability distribution has been found.
A mapping between operators on the Hilbert space of $N$-dimensional quantum system and the Wigner quasiprobability distributions defined on the symplectic flag manifold is discussed. The Wigner quasiprobability distribution is constructed as a dual p airing between the density matrix and the Stratonovich-Weyl kernel. It is shown that the moduli space of the Stratonovich-Weyl kernel is given by an intersection of the coadjoint orbit space of the $SU(N)$ group and a unit $(N-2)$-dimensional sphere. The general consideration is exemplified by a detailed description of the moduli space of 2, 3 and 4-dimensional systems.
We study the Weyl-Wigner transform in the case of discrete variables defined in a Hilbert space of finite prime-number dimensionality $N$. We define a family of Weyl-Wigner transforms as function of a phase parameter. We show that it is only for a sp ecific value of the parameter that all the properties we have examined have a parallel with the case of continuous variables defined in an infinite-dimensional Hilbert space. A geometrical interpretation is briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا