ﻻ يوجد ملخص باللغة العربية
We argue that dark energy with multiple fields is theoretically well-motivated and predicts distinct observational signatures, in particular when cosmic acceleration takes place along a trajectory that is highly non-geodesic in field space. Such models provide novel physics compared to $Lambda$CDM and quintessence by allowing cosmic acceleration on steep potentials. From the theoretical point of view, these theories can easily satisfy the conjectured swampland constraints and may in certain cases be technically natural, potential problems which are endemic to standard single-field dark energy. Observationally, we argue that while such multi-field models are likely to be largely indistinguishable from the concordance cosmology at the background level, dark energy perturbations can cluster, leading to an enhanced growth of large-scale structure that may be testable as early as the next generation of cosmological surveys.
A web of interlocking observations has established that the expansion of the Universe is speeding up and not slowing, revealing the presence of some form of repulsive gravity. Within the context of general relativity the cause of cosmic acceleration
We study the effect of an explicit interaction between two scalar fields components describing dark matter in the context of a recent proposal framework for interaction. We find that, even assuming a very small coupling, it is sufficient to explain t
In the forthcoming decades, the redshift drift observations in optical and radio bands will provide accurate measurements on $H(z)$ covering the redshift ranges of $2<z<5$ and $0<z<1$. In addition, gravitational wave (GW) standard siren observations
We investigate the creation of cold dark matter (CCDM) cosmology as an alternative to explain the cosmic acceleration. Particular attention is given to the evolution of density perturbations and constraints coming from recent observations. By assumin
We study a phenomenological dark energy model which is rooted in the Veneziano ghost of QCD. In this dark energy model, the energy density of dark energy is proportional to Hubble parameter and the proportional coefficient is of the order $Lambda^3_{