ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay between local structure and electronic properties on CuO under pressure

53   0   0.0 ( 0 )
 نشر من قبل Vera Cuartero
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic and local structural properties of CuO under pressure have been investigated by means of X-ray absorption spectroscopy (XAS) at Cu K edge and ab-initio calculations, up to 17 GPa. The crystal structure of CuO consists of Cu motifs within CuO$_4$ square planar units and two elongated apical Cu-O bonds. The CuO$_4$ square planar units are stable in the studied pressure range, with Cu-O distances that are approximately constant up to 5 GPa, and then decrease slightly up to 17 GPa. In contrast, the elongated Cu-O apical distances decrease continuously with pressure in the studied range. An anomalous increase of the mean square relative displacement (EXAFS Debye Waller, sigma$^2$) of the elongated Cu-O path is observed from 5 GPa up to 13 GPa, when a drastic reduction takes place in sigma$^2$. This is interpreted in terms of local dynamic disorder along the apical Cu-O path. At higher pressures (P>13 GPa), the local structure of Cu$^{2+}$ changes from a 4-fold square planar to a 4+2 Jahn-Teller distorted octahedral ion. We interpret these results in terms of the tendency of the Cu$^{2+}$ ion to form favorable interactions with the apical O atoms. Also, the decrease in Cu-O apical distance caused by compression softens the normal mode associated with the out-of-plane Cu movement. CuO is predicted to have an anomalous rise in permittivity with pressure as well as modest piezoelectricity in the 5-13 GPa pressure range. In addition, the near edge features in our XAS experiment show a discontinuity and a change of tendency at 5 GPa. For P < 5 GPa the evolution of the edge shoulder is ascribed to purely electronic effects which also affect the charge transfer integral. This is linked to a charge migration from the Cu to O, but also to an increase of the energy band gap, which show a change of tendency occurring also at 5 GPa.



قيم البحث

اقرأ أيضاً

136 - Hong-Jian Feng 2012
Ab initio calculations show an antiferromagnetic-ferromagnetic phase transition around 9-10 GPa and a magnetic anomaly at 12 GPa in BiFeO3. The magnetic phase transition also involves a structural and insulator-metal transition. The G-type AFM config uration under pressure leads to an increase of the y component and decrease of the z component of the magnetization, which is caused by the splitting of the dz2 orbital from doubly degenerate eg states. Our results agree with recent experimental results.
We combine low energy muon spin rotation (LE-$mu$SR) and soft-X-ray angle-resolved photoemission spectroscopy (SX-ARPES) to study the magnetic and electronic properties of magnetically doped topological insulators, (Bi,Sb)$_2$Te$_3$. We find that one achieves a full magnetic volume fraction in samples of (V/Cr)$_x$(Bi,Sb)$_{2-x}$Te$_3$ at doping levels x $gtrsim$ 0.16. The observed magnetic transition is not sharp in temperature indicating a gradual magnetic ordering. We find that the evolution of magnetic ordering is consistent with formation of ferromagnetic islands which increase in number and/or volume with decreasing temperature. Resonant ARPES at the V $L_3$ edge reveals a nondispersing impurity band close to the Fermi level as well as V weight integrated into the host band structure. Calculations within the coherent potential approximation of the V contribution to the spectral function confirm that this impurity band is caused by V in substitutional sites. The implications of our results on the observation of the quantum anomalous Hall effect at mK temperatures are discussed.
The negatively charged nitrogen-vacancy (NV-) center in diamond has realized new frontiers in quantum technology. Here, the centers optical and spin resonances are observed under hydrostatic pressures up to 60 GPa. Our observations motivate powerful new techniques to measure pressure and image high pressure magnetic and electric phenomena. Our observations further reveal a fundamental inadequacy of the current model of the center and provide new insight into its electronic structure.
We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the formation of an intermediate phase, a Weyl semimetal, that leads to modification of surface state dispersions. In the topologically trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the Weyl semimetal--TI transition occurs, the surface electronic structure is characterized by gapless states with linear dispersion. The peculiarities of the surface states modification under pressure depend on the band-bending effect. We have also calculated the frequencies of Raman active modes for BiTeI in the proposed high-pressure crystal phases in order to compare them with available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological phase transition does not occur. In BiTeBr, the crystal structure changes with pressure but the phase remains a trivial one. However, the transition appears to be possible if the low-pressure crystal structure is retained. In BiTeCl under pressure, the topological phase does not appear up to 18 GPa due to a relatively large band gap width in this compound.
In pursue of a systematic characterization of rare-earth vanadates under compression, in this work we present a multifaceted study of the phase behavior of zircon-type orthovanadate PrVO$_4$ under high pressure conditions, up until 24 GPa. We have fo und that PrVO$_4$ undergoes a zircon to monazite transition at around 6 GPa, confirming previous results found by Raman experiments. A second transition takes place above 14 GPa, to a BaWO$_4$-I--type structure. The zircon to monazite structural sequence is an irreversible first-order transition, accompanied by a volume collapse of about 9.6%. Monazite phase is thus a metastable polymorph of PrVO$_4$. The monazite-BaWO$_4$-II transition is found to be reversible instead and occurs with a similar volume change. Here we report and discuss the axial and bulk compressibility of all phases. We also compare our results with those for other rare-earth orthovanadates. Finally, by means of optical-absorption experiments and resistivity measurements we determined the effect of pressure on the electronic properties of PrVO$_4$. We found that the zircon-monazite transition produces a collapse of the band gap and an abrupt decrease of the resistivity. The physical reasons for this behavior are discussed. Density-functional-theory simulations support our conclusions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا