ﻻ يوجد ملخص باللغة العربية
We provide with criteria for a family of sequences of operators to share a frequently universal vector. These criteria are variants of the classical Frequent Hypercyclicity Criterion and of a recent criterion due to Grivaux, Matheron and Menet where periodic points play the central role. As an application, we obtain for any operator T in a specific class of operators acting on a separable Banach space, a necessary and sufficient condition on a subset $Lambda$ of the complex plane for the family {$lambda$T : $lambda$ $in$ $Lambda$} to have a common frequently hypercyclic vector. In passing, this permits us to easily exhibit frequent hypercyclic weighted shifts which do not possess common frequent hypercyclic vectors. We also provide with criteria for families of the recently introduced operators of C-type to share a common frequently hypercyclic vector. Further, we prove that the same problem of common $alpha$-frequent hypercyclicity may be vacuous, where the notion of $alpha$-frequent hypercyclicity extends that of frequent hypercyclicity replacing the natural density by more general weighted densities. Finally, it is already known that any operator satisfying the classical Frequent Universality Criterion is $alpha$-frequently universal for any sequence $alpha$ satisfying a suitable condition. We complement this result by showing that for any such operator, there exists a vector x which is $alpha$-frequently universal for T , with respect to all such $alpha$.
Even linear operators on infinite-dimensional spaces can display interesting dynamical properties and yield important links among functional analysis, differential and global geometry and dynamical systems, with a wide range of applications. In parti
Let $X$ and $Y$ be completely regular spaces and $E$ and $F$ be Hausdorff topological vector spaces. We call a linear map $T$ from a subspace of $C(X,E)$ into $C(Y,F)$ a emph{Banach-Stone map} if it has the form $Tf(y) = S_{y}(f(h(y))$ for a family o
In this paper, we establish a common fixed point theorem for two pairs of occasionally weakly compatible single and set-valued maps satisfying a strict contractive condition in a metric space. Our result extends many results existing in the literatur
The split common fixed point problems has found its applications in various branches of mathematics both pure and applied. It provides us a unified structure to study a large number of nonlinear mappings. Our interest here is to apply these mappings
In this note, we prove that a semigroup $S$ is left amenable if and only if every two nonzero elements of $ell^1_+(S)$ have a common nonzero right multiple, where $ell^1_+(S)$ is the positive part of the Banach algebra $ell^1(S)$, or equivalently the