ترغب بنشر مسار تعليمي؟ اضغط هنا

Banach-Stone Theorems for maps preserving common zeros

113   0   0.0 ( 0 )
 نشر من قبل Denny H. Leung
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $X$ and $Y$ be completely regular spaces and $E$ and $F$ be Hausdorff topological vector spaces. We call a linear map $T$ from a subspace of $C(X,E)$ into $C(Y,F)$ a emph{Banach-Stone map} if it has the form $Tf(y) = S_{y}(f(h(y))$ for a family of linear operators $S_{y} : E to F$, $y in Y$, and a function $h: Y to X$. In this paper, we consider maps having the property: cap^{k}_{i=1}Z(f_{i}) eqemptysetiffcap^{k}_{i=1}Z(Tf_{i}) eq emptyset, where $Z(f) = {f = 0}$. We characterize linear bijections with property (Z) between spaces of continuous functions, respectively, spaces of differentiable functions (including $C^{infty}$), as Banach-Stone maps. In particular, we confirm a conjecture of Ercan and Onal: Suppose that $X$ and $Y$ are realcompact spaces and $E$ and $F$ are Hausdorff topological vector lattices (respectively, $C^{*}$-algebras). Let $T: C(X,E) to C(Y,F)$ be a vector lattice isomorphism (respectively, *-algebra isomorphism) such that Z(f) eqemptysetiff Z(Tf) eqemptyset. Then $X$ is homeomorphic to $Y$ and $E$ is lattice isomorphic (respectively, $C^{*}$-isomorphic) to $F$. Some results concerning the continuity of $T$ are also obtained.



قيم البحث

اقرأ أيضاً

105 - Hakima Bouhadjera 2009
In this paper, we establish a common fixed point theorem for two pairs of occasionally weakly compatible single and set-valued maps satisfying a strict contractive condition in a metric space. Our result extends many results existing in the literatur e as those of Aliouche and Popa [15-20]. Also we establish another common fixed point theorem for four owc single and set-valued maps of Gregu% v{s} type which generalizes the results of Djoudi and Nisse, Pathak, Cho, Kang and Madharia and we end our work by giving a third theorem which extends the results given by Elamrani & Mehdaoui and Mbarki.
Let $A$ be an algebra and let $f(x_1,...,x_d)$ be a multilinear polynomial in noncommuting indeterminates $x_i$. We consider the problem of describing linear maps $phi:Ato A$ that preserve zeros of $f$. Under certain technical restrictions we solve t he problem for general polynomials $f$ in the case where $A=M_n(F)$. We also consider quite general algebras $A$, but only for specific polynomials $f$.
We present a constructive proof of the Stone-Yosida representation theorem for Riesz spaces motivated by considerations from formal topology. This theorem is used to derive a representation theorem for f-algebras. In turn, this theorem implies the Ge lfand representation theorem for C*-algebras of operators on Hilbert spaces as formulated by Bishop and Bridges. Our proof is shorter, clearer, and we avoid the use of approximate eigenvalues.
147 - Fumio Hiai 2018
We obtain limit theorems for $Phi(A^p)^{1/p}$ and $(A^psigma B)^{1/p}$ as $ptoinfty$ for positive matrices $A,B$, where $Phi$ is a positive linear map between matrix algebras (in particular, $Phi(A)=KAK^*$) and $sigma$ is an operator mean (in particu lar, the weighted geometric mean), which are considered as certain reciprocal Lie-Trotter formulas and also a generalization of Katos limit to the supremum $Avee B$ with respect to the spectral order.
64 - Fumio Hiai , Yongdo Lim 2018
We first develop a theory of conditional expectations for random variables with values in a complete metric space $M$ equipped with a contractive barycentric map $beta$, and then give convergence theorems for martingales of $beta$-conditional expecta tions. We give the Birkhoff ergodic theorem for $beta$-values of ergodic empirical measures and provide a description of the ergodic limit function in terms of the $beta$-conditional expectation. Moreover, we prove the continuity property of the ergodic limit function by finding a complete metric between contractive barycentric maps on the Wasserstein space of Borel probability measures on $M$. Finally, the large derivation property of $beta$-values of i.i.d. empirical measures is obtained by applying the Sanov large deviation principle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا