ﻻ يوجد ملخص باللغة العربية
In this paper, we study factorizations in the additive monoids of positive algebraic valuations $mathbb{N}_0[alpha]$ of the semiring of polynomials $mathbb{N}_0[X]$ using a methodology introduced by D. D. Anderson, D. F. Anderson, and M. Zafrullah in 1990. A cancellative commutative monoid is atomic if every non-invertible element factors into irreducibles. We begin by determining when $mathbb{N}_0[alpha]$ is atomic, and we give an explicit description of its set of irreducibles. An atomic monoid is a finite factorization monoid (FFM) if every element has only finitely many factorizations (up to order and associates), and it is a bounded factorization monoid (BFM) if for every element there is a bound for the number of irreducibles (counting repetitions) in each of its factorizations. We show that, for the monoid $mathbb{N}_0[alpha]$, the property of being a BFM and the property of being an FFM are equivalent to the ascending chain condition on principal ideals (ACCP). Finally, we give various characterizations for $mathbb{N}_0[alpha]$ to be a unique factorization monoid (UFM), two of them in terms of the minimal polynomial of $alpha$. The properties of being finitely generated, half-factorial, and other-half-factorial are also investigated along the way.
We investigate ideal-semisimple and congruence-semisimple semirings. We give several new characterizations of such semirings using e-projective and e-injective semimodules. We extend several characterizations of semisimple rings to (not necessarily subtractive) commutative semirings.
In this paper, we introduce and study V- and CI-semirings---semirings all of whose simple and cyclic, respectively, semimodules are injective. We describe V-semirings for some classes of semirings and establish some fundamental properties of V-semiri
Suppose that (K, $ u$) is a valued field, f (z) $in$ K[z] is a unitary and irreducible polynomial and (L, $omega$) is an extension of valued fields, where L = K[z]/(f (z)). Further suppose that A is a local domain with quotient field K such that $ u$
Pseudoexponential fields are exponential fields similar to complex exponentiation satisfying the Schanuel Property, which is the abstract statement of Schanuels Conjecture, and an adapted form of existential closure. Here we show that if we remove
We prove that every non-trivial valuation on an infinite superrosy field of positive characteristic has divisible value group and algebraically closed residue field. In fact, we prove the following more general result. Let $K$ be a field such that fo