ﻻ يوجد ملخص باللغة العربية
We prove that every non-trivial valuation on an infinite superrosy field of positive characteristic has divisible value group and algebraically closed residue field. In fact, we prove the following more general result. Let $K$ be a field such that for every finite extension $L$ of $K$ and for every natural number $n>0$ the index $[L^*:(L^*)^n]$ is finite and, if $char(K)=p>0$ and $f: L to L$ is given by $f(x)=x^p-x$, the index $[L^+:f[L]]$ is also finite. Then either there is a non-trivial definable valuation on $K$, or every non-trivial valuation on $K$ has divisible value group and, if $char(K)>0$, it has algebraically closed residue field. In the zero characteristic case, we get some partial results of this kind. We also notice that minimal fields have the property that every non-trivial valuation has divisible value group and algebraically closed residue field.
We construct a homeomorphism between the compact regular locale of integrals on a Riesz space and the locale of (valuations) on its spectrum. In fact, we construct two geometric theories and show that they are biinterpretable. The constructions are e
We give a valuation theoretic characterization for a real closed field to be recursively saturated. Our result extends the characterization of Harnik and Ressayre cite{hr} for a divisible ordered abelian group to be recursively saturated.
Suppose that (K, $ u$) is a valued field, f (z) $in$ K[z] is a unitary and irreducible polynomial and (L, $omega$) is an extension of valued fields, where L = K[z]/(f (z)). Further suppose that A is a local domain with quotient field K such that $ u$
In this paper, we study factorizations in the additive monoids of positive algebraic valuations $mathbb{N}_0[alpha]$ of the semiring of polynomials $mathbb{N}_0[X]$ using a methodology introduced by D. D. Anderson, D. F. Anderson, and M. Zafrullah in
We give two concrete examples of continuous valuations on dcpos to separate minimal valuations, point-continuous valuations and continuous valuations: (1) Let $mathcal J$ be the Johnstones non-sober dcpo, and $mu$ be the continuous valuation on $ma