ﻻ يوجد ملخص باللغة العربية
Recently, many zero-shot learning (ZSL) methods focused on learning discriminative object features in an embedding feature space, however, the distributions of the unseen-class features learned by these methods are prone to be partly overlapped, resulting in inaccurate object recognition. Addressing this problem, we propose a novel adversarial network to synthesize compact semantic visual features for ZSL, consisting of a residual generator, a prototype predictor, and a discriminator. The residual generator is to generate the visual feature residual, which is integrated with a visual prototype predicted via the prototype predictor for synthesizing the visual feature. The discriminator is to distinguish the synthetic visual features from the real ones extracted from an existing categorization CNN. Since the generated residuals are generally numerically much smaller than the distances among all the prototypes, the distributions of the unseen-class features synthesized by the proposed network are less overlapped. In addition, considering that the visual features from categorization CNNs are generally inconsistent with their semantic features, a simple feature selection strategy is introduced for extracting more compact semantic visual features. Extensive experimental results on six benchmark datasets demonstrate that our method could achieve a significantly better performance than existing state-of-the-art methods by 1.2-13.2% in most cases.
New categories can be discovered by transforming semantic features into synthesized visual features without corresponding training samples in zero-shot image classification. Although significant progress has been made in generating high-quality synth
We investigate learning feature-to-feature translator networks by alternating back-propagation as a general-purpose solution to zero-shot learning (ZSL) problems. It is a generative model-based ZSL framework. In contrast to models based on generative
Zero-Shot Learning (ZSL) targets at recognizing unseen categories by leveraging auxiliary information, such as attribute embedding. Despite the encouraging results achieved, prior ZSL approaches focus on improving the discriminant power of seen-class
Generalized zero-shot learning (GZSL) has achieved significant progress, with many efforts dedicated to overcoming the problems of visual-semantic domain gap and seen-unseen bias. However, most existing methods directly use feature extraction models
The recent flourish of deep learning in various tasks is largely accredited to the rich and accessible labeled data. Nonetheless, massive supervision remains a luxury for many real applications, boosting great interest in label-scarce techniques such