ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Feature-to-Feature Translator by Alternating Back-Propagation for Generative Zero-Shot Learning

114   0   0.0 ( 0 )
 نشر من قبل Yizhe Zhu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate learning feature-to-feature translator networks by alternating back-propagation as a general-purpose solution to zero-shot learning (ZSL) problems. It is a generative model-based ZSL framework. In contrast to models based on generative adversarial networks (GAN) or variational autoencoders (VAE) that require auxiliary networks to assist the training, our model consists of a single conditional generator that maps class-level semantic features and Gaussian white noise vector accounting for instance-level latent factors to visual features, and is trained by maximum likelihood estimation. The training process is a simple yet effective alternating back-propagation process that iterates the following two steps: (i) the inferential back-propagation to infer the latent factors of each observed example, and (ii) the learning back-propagation to update the model parameters. We show that, with slight modifications, our model is capable of learning from incomplete visual features for ZSL. We conduct extensive comparisons with existing generative ZSL methods on five benchmarks, demonstrating the superiority of our method in not only ZSL performance but also convergence speed and computational cost. Specifically, our model outperforms the existing state-of-the-art methods by a remarkable margin up to 3.1% and 4.0% in ZSL and generalized ZSL settings, respectively.

قيم البحث

اقرأ أيضاً

140 - Bo Liu , Qiulei Dong , Zhanyi Hu 2020
Recently, many zero-shot learning (ZSL) methods focused on learning discriminative object features in an embedding feature space, however, the distributions of the unseen-class features learned by these methods are prone to be partly overlapped, resu lting in inaccurate object recognition. Addressing this problem, we propose a novel adversarial network to synthesize compact semantic visual features for ZSL, consisting of a residual generator, a prototype predictor, and a discriminator. The residual generator is to generate the visual feature residual, which is integrated with a visual prototype predicted via the prototype predictor for synthesizing the visual feature. The discriminator is to distinguish the synthetic visual features from the real ones extracted from an existing categorization CNN. Since the generated residuals are generally numerically much smaller than the distances among all the prototypes, the distributions of the unseen-class features synthesized by the proposed network are less overlapped. In addition, considering that the visual features from categorization CNNs are generally inconsistent with their semantic features, a simple feature selection strategy is introduced for extracting more compact semantic visual features. Extensive experimental results on six benchmark datasets demonstrate that our method could achieve a significantly better performance than existing state-of-the-art methods by 1.2-13.2% in most cases.
Zero-Shot Learning (ZSL) targets at recognizing unseen categories by leveraging auxiliary information, such as attribute embedding. Despite the encouraging results achieved, prior ZSL approaches focus on improving the discriminant power of seen-class features, yet have largely overlooked the geometric structure of the samples and the prototypes. The subsequent attribute-based generative adversarial network (GAN), as a result, also neglects the topological information in sample generation and further yields inferior performances in classifying the visual features of unseen classes. In this paper, we introduce a novel structure-aware feature generation scheme, termed as SA-GAN, to explicitly account for the topological structure in learning both the latent space and the generative networks. Specifically, we introduce a constraint loss to preserve the initial geometric structure when learning a discriminative latent space, and carry out our GAN training with additional supervising signals from a structure-aware discriminator and a reconstruction module. The former supervision distinguishes fake and real samples based on their affinity to class prototypes, while the latter aims to reconstruct the original feature space from the generated latent space. This topology-preserving mechanism enables our method to significantly enhance the generalization capability on unseen-classes and consequently improve the classification performance. Experiments on four benchmarks demonstrate that the proposed approach consistently outperforms the state of the art. Our code can be found in the supplementary material and will also be made publicly available.
Generalized zero-shot learning (GZSL) has achieved significant progress, with many efforts dedicated to overcoming the problems of visual-semantic domain gap and seen-unseen bias. However, most existing methods directly use feature extraction models trained on ImageNet alone, ignoring the cross-dataset bias between ImageNet and GZSL benchmarks. Such a bias inevitably results in poor-quality visual features for GZSL tasks, which potentially limits the recognition performance on both seen and unseen classes. In this paper, we propose a simple yet effective GZSL method, termed feature refinement for generalized zero-shot learning (FREE), to tackle the above problem. FREE employs a feature refinement (FR) module that incorporates textit{semantic$rightarrow$visual} mapping into a unified generative model to refine the visual features of seen and unseen class samples. Furthermore, we propose a self-adaptive margin center loss (SAMC-loss) that cooperates with a semantic cycle-consistency loss to guide FR to learn class- and semantically-relevant representations, and concatenate the features in FR to extract the fully refined features. Extensive experiments on five benchmark datasets demonstrate the significant performance gain of FREE over its baseline and current state-of-the-art methods. Our codes are available at https://github.com/shiming-chen/FREE .
76 - Aoxue Li , Zhiwu Lu , Liwei Wang 2017
Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task due to two main issues: lack of sufficient training data for every class and difficulty in learning discriminative features for repres entation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e. zero-shot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot fine-grained classification.
New categories can be discovered by transforming semantic features into synthesized visual features without corresponding training samples in zero-shot image classification. Although significant progress has been made in generating high-quality synth esized visual features using generative adversarial networks, guaranteeing semantic consistency between the semantic features and visual features remains very challenging. In this paper, we propose a novel zero-shot learning approach, GAN-CST, based on class knowledge to visual feature learning to tackle the problem. The approach consists of three parts, class knowledge overlay, semi-supervised learning and triplet loss. It applies class knowledge overlay (CKO) to obtain knowledge not only from the corresponding class but also from other classes that have the knowledge overlay. It ensures that the knowledge-to-visual learning process has adequate information to generate synthesized visual features. The approach also applies a semi-supervised learning process to re-train knowledge-to-visual model. It contributes to reinforcing synthesized visual features generation as well as new category prediction. We tabulate results on a number of benchmark datasets demonstrating that the proposed model delivers superior performance over state-of-the-art approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا