ترغب بنشر مسار تعليمي؟ اضغط هنا

On the model-based stochastic value gradient for continuous reinforcement learning

53   0   0.0 ( 0 )
 نشر من قبل Brandon Amos
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For over a decade, model-based reinforcement learning has been seen as a way to leverage control-based domain knowledge to improve the sample-efficiency of reinforcement learning agents. While model-based agents are conceptually appealing, their policies tend to lag behind those of model-free agents in terms of final reward, especially in non-trivial environments. In response, researchers have proposed model-based agents with increasingly complex components, from ensembles of probabilistic dynamics models, to heuristics for mitigating model error. In a reversal of this trend, we show that simple model-based agents can be derived from existing ideas that not only match, but outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward. We find that a model-free soft value estimate for policy evaluation and a model-based stochastic value gradient for policy improvement is an effective combination, achieving state-of-the-art results on a high-dimensional humanoid control task, which most model-based agents are unable to solve. Our findings suggest that model-based policy evaluation deserves closer attention.

قيم البحث

اقرأ أيضاً

Learning models of the environment from data is often viewed as an essential component to building intelligent reinforcement learning (RL) agents. The common practice is to separate the learning of the model from its use, by constructing a model of t he environments dynamics that correctly predicts the observed state transitions. In this paper we argue that the limited representational resources of model-based RL agents are better used to build models that are directly useful for value-based planning. As our main contribution, we introduce the principle of value equivalence: two models are value equivalent with respect to a set of functions and policies if they yield the same Bellman updates. We propose a formulation of the model learning problem based on the value equivalence principle and analyze how the set of feasible solutions is impacted by the choice of policies and functions. Specifically, we show that, as we augment the set of policies and functions considered, the class of value equivalent models shrinks, until eventually collapsing to a single point corresponding to a model that perfectly describes the environment. In many problems, directly modelling state-to-state transitions may be both difficult and unnecessary. By leveraging the value-equivalence principle one may find simpler models without compromising performance, saving computation and memory. We illustrate the benefits of value-equivalent model learning with experiments comparing it against more traditional counterparts like maximum likelihood estimation. More generally, we argue that the principle of value equivalence underlies a number of recent empirical successes in RL, such as Value Iteration Networks, the Predictron, Value Prediction Networks, TreeQN, and MuZero, and provides a first theoretical underpinning of those results.
Significant progress has been made in the area of model-based reinforcement learning. State-of-the-art algorithms are now able to match the asymptotic performance of model-free methods while being significantly more data efficient. However, this succ ess has come at a price: state-of-the-art model-based methods require significant computation interleaved with data collection, resulting in run times that take days, even if the amount of agent interaction might be just hours or even minutes. When considering the goal of learning in real-time on real robots, this means these state-of-the-art model-based algorithms still remain impractical. In this work, we propose an asynchronous framework for model-based reinforcement learning methods that brings down the run time of these algorithms to be just the data collection time. We evaluate our asynchronous framework on a range of standard MuJoCo benchmarks. We also evaluate our asynchronous framework on three real-world robotic manipulation tasks. We show how asynchronous learning not only speeds up learning w.r.t wall-clock time through parallelization, but also further reduces the sample complexity of model-based approaches by means of improving the exploration and by means of effectively avoiding the policy overfitting to the deficiencies of learned dynamics models.
Model-based reinforcement learning (MBRL) is widely seen as having the potential to be significantly more sample efficient than model-free RL. However, research in model-based RL has not been very standardized. It is fairly common for authors to expe riment with self-designed environments, and there are several separate lines of research, which are sometimes closed-sourced or not reproducible. Accordingly, it is an open question how these various existing MBRL algorithms perform relative to each other. To facilitate research in MBRL, in this paper we gather a wide collection of MBRL algorithms and propose over 18 benchmarking environments specially designed for MBRL. We benchmark these algorithms with unified problem settings, including noisy environments. Beyond cataloguing performance, we explore and unify the underlying algorithmic differences across MBRL algorithms. We characterize three key research challenges for future MBRL research: the dynamics bottleneck, the planning horizon dilemma, and the early-termination dilemma. Finally, to maximally facilitate future research on MBRL, we open-source our benchmark in http://www.cs.toronto.edu/~tingwuwang/mbrl.html.
Accuracy and generalization of dynamics models is key to the success of model-based reinforcement learning (MBRL). As the complexity of tasks increases, so does the sample inefficiency of learning accurate dynamics models. However, many complex tasks also exhibit sparsity in the dynamics, i.e., actions have only a local effect on the system dynamics. In this paper, we exploit this property with a causal invariance perspective in the single-task setting, introducing a new type of state abstraction called textit{model-invariance}. Unlike previous forms of state abstractions, a model-invariance state abstraction leverages causal sparsity over state variables. This allows for compositional generalization to unseen states, something that non-factored forms of state abstractions cannot do. We prove that an optimal policy can be learned over this model-invariance state abstraction and show improved generalization in a simple toy domain. Next, we propose a practical method to approximately learn a model-invariant representation for complex domains and validate our approach by showing improved modelling performance over standard maximum likelihood approaches on challenging tasks, such as the MuJoCo-based Humanoid. Finally, within the MBRL setting we show strong performance gains with respect to sample efficiency across a host of other continuous control tasks.
Action delays degrade the performance of reinforcement learning in many real-world systems. This paper proposes a formal definition of delay-aware Markov Decision Process and proves it can be transformed into standard MDP with augmented states using the Markov reward process. We develop a delay-aware model-based reinforcement learning framework that can incorporate the multi-step delay into the learned system models without learning effort. Experiments with the Gym and MuJoCo platforms show that the proposed delay-aware model-based algorithm is more efficient in training and transferable between systems with various durations of delay compared with off-policy model-free reinforcement learning methods. Codes available at: https://github.com/baimingc/dambrl.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا