ترغب بنشر مسار تعليمي؟ اضغط هنا

Collaborative Fairness in Federated Learning

85   0   0.0 ( 0 )
 نشر من قبل Xinyi Xu Mr
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In current deep learning paradigms, local training or the Standalone framework tends to result in overfitting and thus poor generalizability. This problem can be addressed by Distributed or Federated Learning (FL) that leverages a parameter server to aggregate model updates from individual participants. However, most existing Distributed or FL frameworks have overlooked an important aspect of participation: collaborative fairness. In particular, all participants can receive the same or similar models, regardless of their contributions. To address this issue, we investigate the collaborative fairness in FL, and propose a novel Collaborative Fair Federated Learning (CFFL) framework which utilizes reputation to enforce participants to converge to different models, thus achieving fairness without compromising the predictive performance. Extensive experiments on benchmark datasets demonstrate that CFFL achieves high fairness, delivers comparable accuracy to the Distributed framework, and outperforms the Standalone framework.

قيم البحث

اقرأ أيضاً

The issue of potential privacy leakage during centralized AIs model training has drawn intensive concern from the public. A Parallel and Distributed Computing (or PDC) scheme, termed Federated Learning (FL), has emerged as a new paradigm to cope with the privacy issue by allowing clients to perform model training locally, without the necessity to upload their personal sensitive data. In FL, the number of clients could be sufficiently large, but the bandwidth available for model distribution and re-upload is quite limited, making it sensible to only involve part of the volunteers to participate in the training process. The client selection policy is critical to an FL process in terms of training efficiency, the final models quality as well as fairness. In this paper, we will model the fairness guaranteed client selection as a Lyapunov optimization problem and then a C2MAB-based method is proposed for estimation of the model exchange time between each client and the server, based on which we design a fairness guaranteed algorithm termed RBCS-F for problem-solving. The regret of RBCS-F is strictly bounded by a finite constant, justifying its theoretical feasibility. Barring the theoretical results, more empirical data can be derived from our real training experiments on public datasets.
In the federated learning setting, multiple clients jointly train a model under the coordination of the central server, while the training data is kept on the client to ensure privacy. Normally, inconsistent distribution of data across different devi ces in a federated network and limited communication bandwidth between end devices impose both statistical heterogeneity and expensive communication as major challenges for federated learning. This paper proposes an algorithm to achieve more fairness and accuracy in federated learning (FedFa). It introduces an optimization scheme that employs a double momentum gradient, thereby accelerating the convergence rate of the model. An appropriate weight selection algorithm that combines the information quantity of training accuracy and training frequency to measure the weights is proposed. This procedure assists in addressing the issue of unfairness in federated learning due to preferences for certain clients. Our results show that the proposed FedFa algorithm outperforms the baseline algorithm in terms of accuracy and fairness.
228 - Xinyi Xu , Lingjuan Lyu 2020
Federated learning (FL) is an emerging practical framework for effective and scalable machine learning among multiple participants, such as end users, organizations and companies. However, most existing FL or distributed learning frameworks have not well addressed two important issues together: collaborative fairness and adversarial robustness (e.g. free-riders and malicious participants). In conventional FL, all participants receive the global model (equal rewards), which might be unfair to the high-contributing participants. Furthermore, due to the lack of a safeguard mechanism, free-riders or malicious adversaries could game the system to access the global model for free or to sabotage it. In this paper, we propose a novel Robust and Fair Federated Learning (RFFL) framework to achieve collaborative fairness and adversarial robustness simultaneously via a reputation mechanism. RFFL maintains a reputation for each participant by examining their contributions via their uploaded gradients (using vector similarity) and thus identifies non-contributing or malicious participants to be removed. Our approach differentiates itself by not requiring any auxiliary/validation dataset. Extensive experiments on benchmark datasets show that RFFL can achieve high fairness and is very robust to different types of adversaries while achieving competitive predictive accuracy.
The federated learning (FL) framework trains a machine learning model using decentralized data stored at edge client devices by periodically aggregating locally trained models. Popular optimization algorithms of FL use vanilla (stochastic) gradient d escent for both local updates at clients and global updates at the aggregating server. Recently, adaptive optimization methods such as AdaGrad have been studied for server updates. However, the effect of using adaptive optimization methods for local updates at clients is not yet understood. We show in both theory and practice that while local adaptive methods can accelerate convergence, they can cause a non-vanishing solution bias, where the final converged solution may be different from the stationary point of the global objective function. We propose correction techniques to overcome this inconsistency and complement the local adaptive methods for FL. Extensive experiments on realistic federated training tasks show that the proposed algorithms can achieve faster convergence and higher test accuracy than the baselines without local adaptivity.
Federated learning (FL) was proposed to achieve collaborative machine learning among various clients without uploading private data. However, due to model aggregation strategies, existing frameworks require strict model homogeneity, limiting the appl ication in more complicated scenarios. Besides, the communication cost of FLs model and gradient transmission is extremely high. This paper proposes Loosely Coupled Federated Learning (LC-FL), a framework using generative models as transmission media to achieve low communication cost and heterogeneous federated learning. LC-FL can be applied on scenarios where clients possess different kinds of machine learning models. Experiments on real-world datasets covering different multiparty scenarios demonstrate the effectiveness of our proposal.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا