ﻻ يوجد ملخص باللغة العربية
Deep learning has drawn a lot of interest in recent years due to its effectiveness in processing big and complex observational data gathered from diverse instruments. Here we propose a new deep learning method, called SolarUnet, to identify and track solar magnetic flux elements or features in observed vector magnetograms based on the Southwest Automatic Magnetic Identification Suite (SWAMIS). Our method consists of a data pre-processing component that prepares training data from the SWAMIS tool, a deep learning model implemented as a U-shaped convolutional neural network for fast and accurate image segmentation, and a post-processing component that prepares tracking results. SolarUnet is applied to data from the 1.6 meter Goode Solar Telescope at the Big Bear Solar Observatory. When compared to the widely used SWAMIS tool, SolarUnet is faster while agreeing mostly with SWAMIS on feature size and flux distributions, and complementing SWAMIS in tracking long-lifetime features. Thus, the proposed physics-guided deep learning-based tool can be considered as an alternative method for solar magnetic tracking.
The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficien
We are reaching the point where spectropolarimetric surveys have run for long enough to reveal solar-like magnetic activity cycles. In this paper we investigate what would be the best strategy to identify solar-like magnetic cycles and ask which larg
The Earths primary source of energy is the radiant energy generated by the Sun, which is referred to as solar irradiance, or total solar irradiance (TSI) when all of the radiation is measured. A minor change in the solar irradiance can have a signifi
Coronal magnetic flux ropes are generally considered to be the core structure of large-scale solar eruptions. Recent observations found that solar eruptions could be initiated by a sequence of flux feeding, during which chromospheric fibrils rise upw
The removal of magnetic flux from the quiet-sun photosphere is important for maintaining the statistical steady-state of the magnetic field there, for determining the magnetic flux budget of the Sun, and for estimating the rate of energy injected int