ﻻ يوجد ملخص باللغة العربية
Synthetic creation of drum sounds (e.g., in drum machines) is commonly performed using analog or digital synthesis, allowing a musician to sculpt the desired timbre modifying various parameters. Typically, such parameters control low-level features of the sound and often have no musical meaning or perceptual correspondence. With the rise of Deep Learning, data-driven processing of audio emerges as an alternative to traditional signal processing. This new paradigm allows controlling the synthesis process through learned high-level features or by conditioning a model on musically relevant information. In this paper, we apply a Generative Adversarial Network to the task of audio synthesis of drum sounds. By conditioning the model on perceptual features computed with a publicly available feature-extractor, intuitive control is gained over the generation process. The experiments are carried out on a large collection of kick, snare, and cymbal sounds. We show that, compared to a specific prior work based on a U-Net architecture, our approach considerably improves the quality of the generated drum samples, and that the conditional input indeed shapes the perceptual characteristics of the sounds. Also, we provide audio examples and release the code used in our experiments.
In this paper, we compare different audio signal representations, including the raw audio waveform and a variety of time-frequency representations, for the task of audio synthesis with Generative Adversarial Networks (GANs). We conduct the experiment
The state-of-the-art in text-to-speech synthesis has recently improved considerably due to novel neural waveform generation methods, such as WaveNet. However, these methods suffer from their slow sequential inference process, while their parall
The intelligibility of speech severely degrades in the presence of environmental noise and reverberation. In this paper, we propose a novel deep learning based system for modifying the speech signal to increase its intelligibility under the equal-pow
This paper proposes a method for generating speech from filterbank mel frequency cepstral coefficients (MFCC), which are widely used in speech applications, such as ASR, but are generally considered unusable for speech synthesis. First, we predict fu
In this work, we propose deep latent space clustering for speaker diarization using generative adversarial network (GAN) backprojection with the help of an encoder network. The proposed diarization system is trained jointly with GAN loss, latent vari