ﻻ يوجد ملخص باللغة العربية
In this paper, we compare different audio signal representations, including the raw audio waveform and a variety of time-frequency representations, for the task of audio synthesis with Generative Adversarial Networks (GANs). We conduct the experiments on a subset of the NSynth dataset. The architecture follows the benchmark Progressive Growing Wasserstein GAN. We perform experiments both in a fully non-conditional manner as well as conditioning the network on the pitch information. We quantitatively evaluate the generated material utilizing standard metrics for assessing generative models, and compare training and sampling times. We show that complex-valued as well as the magnitude and Instantaneous Frequency of the Short-Time Fourier Transform achieve the best results, and yield fast generation and inversion times. The code for feature extraction, training and evaluating the model is available online.
Generative Adversarial Networks (GANs) currently achieve the state-of-the-art sound synthesis quality for pitched musical instruments using a 2-channel spectrogram representation consisting of log magnitude and instantaneous frequency (the IFSpectrog
Synthetic creation of drum sounds (e.g., in drum machines) is commonly performed using analog or digital synthesis, allowing a musician to sculpt the desired timbre modifying various parameters. Typically, such parameters control low-level features o
The state-of-the-art in text-to-speech synthesis has recently improved considerably due to novel neural waveform generation methods, such as WaveNet. However, these methods suffer from their slow sequential inference process, while their parall
The intelligibility of speech severely degrades in the presence of environmental noise and reverberation. In this paper, we propose a novel deep learning based system for modifying the speech signal to increase its intelligibility under the equal-pow
With the development of deep learning and artificial intelligence, audio synthesis has a pivotal role in the area of machine learning and shows strong applicability in the industry. Meanwhile, significant efforts have been dedicated by researchers to