ﻻ يوجد ملخص باللغة العربية
The increasing computational demand of Deep Learning has propelled research in special-purpose inference accelerators based on emerging non-volatile memory (NVM) technologies. Such NVM crossbars promise fast and energy-efficient in-situ Matrix Vector Multiplication (MVM) thus alleviating the long-standing von Neuman bottleneck in todays digital hardware. However, the analog nature of computing in these crossbars is inherently approximate and results in deviations from ideal output values, which reduces the overall performance of Deep Neural Networks (DNNs) under normal circumstances. In this paper, we study the impact of these non-idealities under adversarial circumstances. We show that the non-ideal behavior of analog computing lowers the effectiveness of adversarial attacks, in both Black-Box and White-Box attack scenarios. In a non-adaptive attack, where the attacker is unaware of the analog hardware, we observe that analog computing offers a varying degree of intrinsic robustness, with a peak adversarial accuracy improvement of 35.34%, 22.69%, and 9.90% for white box PGD (epsilon=1/255, iter=30) for CIFAR-10, CIFAR-100, and ImageNet respectively. We also demonstrate Hardware-in-Loop adaptive attacks that circumvent this robustness by utilizing the knowledge of the NVM model.
Attention-based networks have achieved state-of-the-art performance in many computer vision tasks, such as image classification. Unlike Convolutional Neural Network (CNN), the major part of the vanilla Vision Transformer (ViT) is the attention block
Training convolutional neural networks (CNNs) with a strict Lipschitz constraint under the l_{2} norm is useful for provable adversarial robustness, interpretable gradients and stable training. While 1-Lipschitz CNNs can be designed by enforcing a 1-
We consider a wireless communication system that consists of a background emitter, a transmitter, and an adversary. The transmitter is equipped with a deep neural network (DNN) classifier for detecting the ongoing transmissions from the background em
State-of-the-art deep neural networks (DNNs) have been proved to have excellent performance on unsupervised domain adaption (UDA). However, recent work shows that DNNs perform poorly when being attacked by adversarial samples, where these attacks are
Recent studies have shown that deep neural networks (DNNs) are highly vulnerable to adversarial attacks, including evasion and backdoor (poisoning) attacks. On the defense side, there have been intensive interests in both empirical and provable robus