ﻻ يوجد ملخص باللغة العربية
In this paper, we study the problem of balancing effectiveness and efficiency in automated feature selection. Feature selection is a fundamental intelligence for machine learning and predictive analysis. After exploring many feature selection methods, we observe a computational dilemma: 1) traditional feature selection methods (e.g., mRMR) are mostly efficient, but difficult to identify the best subset; 2) the emerging reinforced feature selection methods automatically navigate feature space to explore the best subset, but are usually inefficient. Are automation and efficiency always apart from each other? Can we bridge the gap between effectiveness and efficiency under automation? Motivated by such a computational dilemma, this study is to develop a novel feature space navigation method. To that end, we propose an Interactive Reinforced Feature Selection (IRFS) framework that guides agents by not just self-exploration experience, but also diverse external skilled trainers to accelerate learning for feature exploration. Specifically, we formulate the feature selection problem into an interactive reinforcement learning framework. In this framework, we first model two trainers skilled at different searching strategies: (1) KBest based trainer; (2) Decision Tree based trainer. We then develop two strategies: (1) to identify assertive and hesitant agents to diversify agent training, and (2) to enable the two trainers to take the teaching role in different stages to fuse the experiences of the trainers and diversify teaching process. Such a hybrid teaching strategy can help agents to learn broader knowledge, and, thereafter, be more effective. Finally, we present extensive experiments on real-world datasets to demonstrate the improved performances of our method: more efficient than existing reinforced selection and more effective than classic selection.
Several AutoML approaches have been proposed to automate the machine learning (ML) process, such as searching for the ML model architectures and hyper-parameters. However, these AutoML pipelines only focus on improving the learning accuracy of benign
We study the problem of balancing effectiveness and efficiency in automated feature selection. After exploring many feature selection methods, we observe a computational dilemma: 1) traditional feature selection is mostly efficient, but difficult to
Feature selection is a prevalent data preprocessing paradigm for various learning tasks. Due to the expensive cost of acquiring supervision information, unsupervised feature selection sparks great interests recently. However, existing unsupervised fe
This paper investigates whether learning contingency-awareness and controllable aspects of an environment can lead to better exploration in reinforcement learning. To investigate this question, we consider an instantiation of this hypothesis evaluate
Offline reinforcement learning (RL purely from logged data) is an important avenue for deploying RL techniques in real-world scenarios. However, existing hyperparameter selection methods for offline RL break the offline assumption by evaluating polic