ترغب بنشر مسار تعليمي؟ اضغط هنا

Short Term Variability of Evolved Massive Stars with TESS II: A New Class of Cool, Pulsating Supergiants

157   0   0.0 ( 0 )
 نشر من قبل Trevor Dorn-Wallenstein
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive stars briefly pass through the yellow supergiant (YSG) phase as they evolve redward across the HR diagram and expand into red supergiants (RSGs). Higher-mass stars pass through the YSG phase again as they evolve blueward after experiencing significant RSG mass loss. These post-RSG objects offer us a tantalizing glimpse into which stars end their lives as RSGs, and why. One telltale sign of a post-RSG object may be an instability to pulsations, depending on the stars interior structure. Here we report the discovery of five YSGs with pulsation periods faster than 1 day, found in a sample of 76 cool supergiants observed by tess at two-minute cadence. These pulsating YSGs are concentrated in a HR diagram region not previously associated with pulsations; we conclude that this is a genuine new class of pulsating star, Fast Yellow Pulsating Supergiants (FYPS). For each FYPS, we extract frequencies via iterative prewhitening and conduct a time-frequency analysis. One FYPS has an extracted frequency that is split into a triplet, and the amplitude of that peak is modulated on the same timescale as the frequency spacing of the triplet; neither rotation nor binary effects are likely culprits. We discuss the evolutionary status of FYPS and conclude that they are candidate post-RSGs. All stars in our sample also show the same stochastic low-frequency variability (SLFV) found in hot OB stars and attributed to internal gravity waves. Finally, we find four $alpha$ Cygni variables in our sample, of which three are newly discovered.

قيم البحث

اقرأ أيضاً

We present the first results from a study of TESS Sector 1 and 2 light curves for eight evolved massive stars in the LMC: six yellow supergiants (YSGs) and two luminous blue variables (LBVs), including S Doradus. We use an iterative prewhitening proc edure to characterize the short-timescale variability in all eight stars. The periodogram of one of the YSGs, HD 269953, displays multiple strong peaks at higher frequencies than its fellows. While the field surrounding HD 269953 is quite crowded, it is the brightest star in the region, and has infrared colors indicating it is dusty. We suggest HD 269953 may be in a post-red supergiant evolutionary phase. We find a signal with a period of $sim5$ days for the LBV HD 269582. The periodogram of S Doradus shows a complicated structure, with peaks below frequencies of 1.5 cycles per day. We fit the shape of the background noise of all eight light curves, and find a red noise component in all of them. However, the power law slope of the red noise and the timescale over which coherent structures arise changes from star to star. Our results highlight the potential for studying evolved massive stars with TESS.
$Context.$ Pulsating stars are windows to the physics of stars enabling us to see glimpses of their interior. Not all stars pulsate, however. On the main sequence, pulsating stars form an almost continuous sequence in brightness, except for a magnitu de range between $delta$ Scuti and slowly pulsating B stars. Against all expectations, 36 periodic variables were discovered in 2013 in this luminosity range in the open cluster NGC 3766, the origins of which was a mystery. $Aims.$ We investigate the properties of those new variability class candidates in relation to their stellar rotation rates and stellar multiplicity. $Methods.$ We took multi-epoch spectra over three consecutive nights using ESOs Very Large Telescope. $Results.$ We find that the majority of the new variability class candidates are fast-rotating pulsators that obey a new period-luminosity relation. We argue that the new relation discovered here has a different physical origin to the period-luminosity relations observed for Cepheids. $Conclusions.$ We anticipate that our discovery will boost the relatively new field of stellar pulsation in fast-rotating stars, will open new doors for asteroseismology, and will potentially offer a new tool to estimate stellar ages or cosmic distances.
The recently launched NASA Transiting Exoplanet Survey Satellite (TESS) mission is going to collect lightcurves for a few hundred million of stars and we expect to increase the number of pulsating stars to analyze compared to the few thousand stars o bserved by the CoRoT, $textit{Kepler}$ and K2 missions. However, most of the TESS targets have not yet been properly classified and characterized. In order to improve the analysis of the TESS data, it is crucial to determine the type of stellar pulsations in a timely manner. We propose an automatic method to classify stars attending to their pulsation properties, in particular, to identify solar-like pulsators among all TESS targets. It relies on the use of the global amount of power contained in the power spectrum (already known as the FliPer method) as a key parameter, along with the effective temperature, to feed into a machine learning classifier. Our study, based on TESS simulated datasets, shows that we are able to classify pulsators with a $98%$ accuracy.
In this study, we conduct a pilot program aimed at the red supergiant population of the Magellanic Clouds. We intend to extend the current known sample to the unexplored low end of the brightness distribution of these stars, building a more represent ative dataset with which to extrapolate their behaviour to other Galactic and extra-galactic environments. We select candidates using only near infrared photometry, and with medium resolution multi-object spectroscopy, we perform spectral classification and derive their line-of-sight velocities, confirming the nature of the candidates and their membership to the clouds. Around two hundred new RSGs have been detected, hinting at a yet to be observed large population. Using near and mid infrared photometry we study the brightness distribution of these stars, the onset of mass-loss and the effect of dust in their atmospheres. Based on this sample, new a priori classification criteria are investigated, combining mid and near infrared photometry to improve the observational efficiency of similar programs as this.
In photometry of $gamma$ Cas (B0.5 IVe) from the SMEI and BRITE-Constellation satellites, indications of low-order non-radial pulsation have recently been found, which would establish an important commonality with the class of classical Be stars at l arge. New photometry with the TESS satellite has detected three frequency groups near 1.0 ($g1$), 2.4 ($g2$), and 5.1 ($g3$) d$^{-1}$, respectively. Some individual frequencies are nearly harmonics or combination frequencies but not exactly so. Frequency groups are known from roughly three quarters of all classical Be stars and also from pulsations of $beta$ Cep, SPB, and $gamma$ Dor stars and, therefore, firmly establish $gamma$ Cas as a non-radial pulsator. The total power in each frequency group is variable. An isolated feature exists at 7.57 d$^{-1}$ and, together with the strongest peaks in the second and third groups ordered by increasing frequency ($g2$ and $g3$), is the only one detected in all three TESS sectors. The former long-term 0.82 d$^{-1}$ variability would fall into $g1$ and has not returned at a significant level, questioning its attribution to rotational modulation. Low-frequency stochastic variability is a dominant feature of the TESS light curve, possibly caused by internal gravity waves excited at the core-envelope interface. These are known to be efficient at transporting angular momentum outward, and may also drive the oscillations that constitute $g1$ and $g2$. The hard X-ray flux of $gamma$ Cas is the only remaining major property that distinguishes this star from the class of classical Be stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا