ﻻ يوجد ملخص باللغة العربية
In this study, we conduct a pilot program aimed at the red supergiant population of the Magellanic Clouds. We intend to extend the current known sample to the unexplored low end of the brightness distribution of these stars, building a more representative dataset with which to extrapolate their behaviour to other Galactic and extra-galactic environments. We select candidates using only near infrared photometry, and with medium resolution multi-object spectroscopy, we perform spectral classification and derive their line-of-sight velocities, confirming the nature of the candidates and their membership to the clouds. Around two hundred new RSGs have been detected, hinting at a yet to be observed large population. Using near and mid infrared photometry we study the brightness distribution of these stars, the onset of mass-loss and the effect of dust in their atmospheres. Based on this sample, new a priori classification criteria are investigated, combining mid and near infrared photometry to improve the observational efficiency of similar programs as this.
The characterisation of the multiplicity of high-mass stars is of fundamental importance to understand their evolution, the diversity of observed core-collapse supernovae and the formation of gravitational wave progenitor systems. Despite that, until
The empirical upper luminosity boundary $L_{rm max}$ of cool supergiants, often referred to as the Humphreys-Davidson limit, is thought to encode information on the general mass-loss behaviour of massive stars. Further, it delineates the boundary at
We have identified seven red supergiants (RSGs) in the Large Magellanic Cloud (LMC) and four RSGs in the Small Magellanic Cloud (SMC), all of which have spectral types that are considerably later than the average type observed in their parent galaxy.
B[e] supergiants are evolved massive stars with a complex circumstellar environment. A number of important emission features probe the structure and the kinematics of the circumstellar material. In our survey of Magellanic Cloud B[e] supergiants we f
A very long term near-infrared variable star survey towards the Large and Small Magellanic Clouds was carried out using the 1.4m InfraRed Survey Facility at the South African Astronomical Observatory. This project was initiated in December 2000 in th