ﻻ يوجد ملخص باللغة العربية
Quantum dots fabricated using techniques and materials that are compatible with semiconductor manufacturing are promising for quantum information processing. While great progress has been made toward high-fidelity control of quantum dots positioned in a linear arrangement, scalability along two dimensions is a key step toward practical quantum information processing. Here we demonstrate a two-dimensional quantum dot array where each quantum dot is tuned to single-charge occupancy, verified by simultaneous measuring with two integrated radio frequency charge sensors. We achieve this by using planar germanium quantum dots with low disorder and small effective mass, allowing the incorporation of dedicated barrier gates to control the coupling of the quantum dots. We demonstrate hole charge filling consistent with a Fock-Darwin spectrum and show that we can tune single-hole quantum dots from isolated quantum dots to strongly exchange coupled quantum dots. These results motivate the use of planar germanium quantum dots as building blocks for quantum simulation and computation.
Significant advances have been made towards fault-tolerant operation of silicon spin qubits, with single qubit fidelities exceeding 99.9%, several demonstrations of two-qubit gates based on exchange coupling, and the achievement of coherent single sp
We characterize the positively charged exciton (X1+) in single InGaAs quantum dots using resonant laser spectroscopy. Three samples with different dopant species (Be or C as acceptors, Si as a donor) are compared. The p-doped samples exhibit larger i
In this letter we report single-hole tunneling through a quantum dot in a two-dimensional hole gas, situated in a narrow-channel field-effect transistor in intrinsic silicon. Two layers of aluminum gate electrodes are defined on Si/SiO$_2$ using elec
Silicon spin qubits have achieved high-fidelity one- and two-qubit gates, above error correction thresholds, promising an industrial route to fault-tolerant quantum computation. A significant next step for the development of scalable multi-qubit proc
Most proof-of-principle experiments for spin qubits have been performed using GaAs-based quantum dots because of the excellent control they offer over tunneling barriers and the orbital and spin degrees of freedom. Here, we present the first realizat