ترغب بنشر مسار تعليمي؟ اضغط هنا

Shuttling a single charge across a one-dimensional array of silicon quantum dots

112   0   0.0 ( 0 )
 نشر من قبل Jason Petta
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Significant advances have been made towards fault-tolerant operation of silicon spin qubits, with single qubit fidelities exceeding 99.9%, several demonstrations of two-qubit gates based on exchange coupling, and the achievement of coherent single spin-photon coupling. Coupling arbitrary pairs of spatially separated qubits in a quantum register poses a significant challenge as most qubit systems are constrained to two dimensions (2D) with nearest neighbor connectivity. For spins in silicon, new methods for quantum state transfer should be developed to achieve connectivity beyond nearest-neighbor exchange. Here we demonstrate shuttling of a single electron across a linear array of 9 series-coupled Si quantum dots in ~50 ns via a series of pairwise interdot charge transfers. By progressively constructing more complex pulse sequences we perform parallel shuttling of 2 and 3 electrons at a time through the 9-dot array. These experiments establish that physical transport of single electrons is feasible in large silicon quantum dot arrays.

قيم البحث

اقرأ أيضاً

Quantum dots fabricated using techniques and materials that are compatible with semiconductor manufacturing are promising for quantum information processing. While great progress has been made toward high-fidelity control of quantum dots positioned i n a linear arrangement, scalability along two dimensions is a key step toward practical quantum information processing. Here we demonstrate a two-dimensional quantum dot array where each quantum dot is tuned to single-charge occupancy, verified by simultaneous measuring with two integrated radio frequency charge sensors. We achieve this by using planar germanium quantum dots with low disorder and small effective mass, allowing the incorporation of dedicated barrier gates to control the coupling of the quantum dots. We demonstrate hole charge filling consistent with a Fock-Darwin spectrum and show that we can tune single-hole quantum dots from isolated quantum dots to strongly exchange coupled quantum dots. These results motivate the use of planar germanium quantum dots as building blocks for quantum simulation and computation.
Spin qubits in silicon quantum dots offer a promising platform for a quantum computer as they have a long coherence time and scalability. The charge sensing technique plays an essential role in reading out the spin qubit as well as tuning the device parameters and therefore its performance in terms of measurement bandwidth and sensitivity is an important factor in spin qubit experiments. Here we demonstrate fast and sensitive charge sensing by a radio-frequency reflectometry of an undoped, accumulation-mode Si/SiGe double quantum dot. We show that the large parasitic capacitance in typical accumulation-mode gate geometries impedes reflectometry measurements. We present a gate geometry that significantly reduces the parasitic capacitance and enables fast single-shot readout. The technique allows us to distinguish between the singly- and doubly-occupied two-electron states under the Pauli spin blockade condition in an integration time of 0.8 {mu}s, the shortest value ever reported in silicon, by the signal-to-noise ratio of 6. These results provide a guideline for designing silicon spin qubit devices suitable for the fast and high-fidelity readout.
Recent studies of silicon spin qubits at temperatures above 1 K are encouraging demonstrations that the cooling requirements for solid-state quantum computing can be considerably relaxed. However, qubit readout mechanisms that rely on charge sensing with a single-island single-electron transistor (SISET) quickly lose sensitivity due to thermal broadening of the electron distribution in the reservoirs. Here we exploit the tunneling between two quantised states in a double-island SET (DISET) to demonstrate a charge sensor with an improvement in signal-to-noise by an order of magnitude compared to a standard SISET, and a single-shot charge readout fidelity above 99 % up to 8 K at a bandwidth > 100 kHz. These improvements are consistent with our theoretical modelling of the temperature-dependent current transport for both types of SETs. With minor additional hardware overheads, these sensors can be integrated into existing qubit architectures for high fidelity charge readout at few-kelvin temperatures.
Donors in silicon can now be positioned with an accuracy of about one lattice constant, making it possible in principle to form donor arrays for quantum computation or quantum simulation applications. However the multi-valley character of the silicon conduction band combines with central cell corrections to the donor state Hamiltonian to translate atomic scale imperfections in donor placement into strongly disordered inter-donor hybridization. We present a simple model that is able to account accurately for central-cell corrections, and use it to assess the impact of donor-placement disorder on donor array properties in both itinerant and localized limits.
The advanced nanoscale integration available in silicon complementary metal-oxide-semiconductor (CMOS) technology provides a key motivation for its use in spin-based quantum computing applications. Initial demonstrations of quantum dot formation and spin blockade in CMOS foundry-compatible devices are encouraging, but results are yet to match the control of individual electrons demonstrated in university-fabricated multi-gate designs. We show here that the charge state of quantum dots formed in a CMOS nanowire device can be sensed by using floating gates to electrostatically couple it to a remote single electron transistor (SET) formed in an adjacent nanowire. By biasing the nanowire and gates of the remote SET with respect to the nanowire hosting the quantum dots, we controllably form ancillary quantum dots under the floating gates, thus enabling the demonstration of independent control over charge transitions in a quadruple (2x2) quantum dot array. This device overcomes the limitations associated with measurements based on tunnelling transport through the dots and permits the sensing of all charge transitions, down to the last electron in each dot. We use effective mass theory to investigate the necessary optimization of the device parameters in order to achieve the tunnel rates required for spin-based quantum computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا