ﻻ يوجد ملخص باللغة العربية
In this study we compared the temporal and periodic variations of the Maximum CME Speed Index (MCMESI) and the number of different class (C, M, and X) solar X-Ray flares for the last two solar cycles (Cycle 23 and 24). To obtain the correlation between the MCMESI and solar flare numbers the cross correlation analysis was applied to monthly data sets. Also to investigate the periodic behavior of all data sets the Multi Taper Method (MTM) and the Morlet wavelet analysis method were performed with daily data from 2009 to 2018. To evaluate our wavelet analysis Cross Wavelet Transform (XWT) and Wavelet Transform Coherence (WTC) methods were performed. Causal relationships between datasets were further examined by Convergence Cross Mapping (CCM) method. In results of our analysis we found followings; 1) The C class X-Ray flare numbers increased about 16 % during the solar cycle 24 compared to cycle 23, while all other data sets decreased; the MCMESI decreased about 16 % and the number of M and X class flares decreased about 32 %. 2) All the X-Ray solar flare classes show remarkable positive correlation with the MCMESI. While the correlation between the MCMESI and C class flares comes from the general solar cycle trend, it mainly results from the fluctuations in the data in case of the X class flares. 3) In general, all class flare numbers and the MCMESI show similar periodic behavior. 4) The 546 days periodicity detected in the MCMESI may not be of solar origin or at least the solar flares are not the source of this periodicity. 5) C and M Class solar flares have a stronger causative effect on the MCMESI compared to X class solar flares. However the only bidirectional causal relationship is obtained between the MCMESI and C class flare numbers.
We present the discovery of a relationship between the maximum ratio of the flare flux (namely, 0.5-4 Ang to the 1-8 Ang flux) and non-flare background (namely, the 1-8 Ang background flux), which clearly separates flares into classes by peak flux le
We report on a comparison of the expansion speeds of limb coronal mass ejections (CMEs) between solar cycles 23 and 24. We selected a large number of limb CME events associated with soft X-ray flare size greater than or equal to M1.0 from both cycles
The unusually large NOAA active region 2192, observed in October 2014, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north-south oriented magnetic system of arcade fie
Both coronal holes and active regions are source regions of the solar wind. The distribution of these coronal structures across both space and time is well known, but it is unclear how much each source contributes to the solar wind. In this study we
The extended minimum of Solar Cycle 23, the extremely quiet solar-wind conditions prevailing, and the mini-maximum of Solar Cycle 24 drew global attention and many authors have since attempted to predict the amplitude of the upcoming Solar Cycle 25,