ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-consistent screening enhances stability of the nonequilibrium excitonic insulator phase

132   0   0.0 ( 0 )
 نشر من قبل Enrico Perfetto
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nonequilibrium excitonic insulator (NEQ-EI) is an excited state of matter characterized by a finite density of coherent excitons and a time-dependent macroscopic polarization. The stability of this exciton superfluid as the density grows is jeopardized by the increased screening efficiency of the looser excitons. In this work we put forward a Hartree plus Screened Exchange HSEX scheme to predict the critical density at which the transition toward a free electron-hole plasma occurs. The dielectric function is calculated self-consistently using the NEQ-EI polarization and found to vanish in the long-wavelength limit. This property makes the exciton superfluid stable up to relatively high densities. Numerical results for the MoS$_{2}$ monolayers indicate that the NEQ-EI phase survives up to densities of the order of $10^{12}mathrm{cm}^{-2}$.



قيم البحث

اقرأ أيضاً

We show that in order to describe the isotropic-nematic transition in stripe forming systems with isotropic competing interactions of the Brazovskii class it is necessary to consider the next to leading order in a 1/N approximation for the effective Hamiltonian. This can be conveniently accomplished within the self-consistent screening approximation. We solve the relevant equations and show that the self-energy in this approximation is able to generate the essential wave vector dependence to account for the anisotropic character of two-point correlation function characteristic of a nematic phase.
Spin accumulation in a paramagnetic semiconductor due to voltage-biased current tunneling from a polarized ferromagnet is experimentally manifest as a small additional spin-dependent resistance. We describe a rigorous model incorporating the necessar y self-consistency between electrochemical potential splitting, spin-dependent injection current, and applied voltage that can be used to simulate this so-called 3T signal as a function of temperature, doping, ferromagnet bulk spin polarization, tunnel barrier features and conduction nonlinearity, and junction voltage bias.
The interplay between topology and correlations can generate a variety of unusual quantum phases, many of which remain to be explored. Recent advances have identified monolayer WTe2 as a promising material for exploring such interplay in a highly tun able fashion. The ground state of this two-dimensional (2D) crystal can be electrostatically tuned from a quantum spin Hall insulator (QSHI) to a superconductor. However, much remains unknown about the nature of these ground states, including the gap-opening mechanism of the insulating state. Here we report systematic studies of the insulating phase in WTe2 monolayer and uncover evidence supporting that the QSHI is also an excitonic insulator (EI). An EI, arising from the spontaneous formation of electron-hole bound states (excitons), is a largely unexplored quantum phase to date, especially when it is topological. Our experiments on high-quality transport devices reveal the presence of an intrinsic insulating state at the charge neutrality point (CNP) in clean samples. The state exhibits both a strong sensitivity to the electric displacement field and a Hall anomaly that are consistent with the excitonic pairing. We further confirm the correlated nature of this charge-neutral insulator by tunneling spectroscopy. Our results support the existence of an EI phase in the clean limit and rule out alternative scenarios of a band insulator or a localized insulator. These observations lay the foundation for understanding a new class of correlated insulators with nontrivial topology and identify monolayer WTe2 as a promising candidate for exploring quantum phases of ground-state excitons.
110 - Yasen Hou , Rui Wang , Rui Xiao 2018
Excitons are spin integer particles that are predicted to condense into a coherent quantum state at sufficiently low temperature, and exciton condensates can be realized at much higher temperature than condensates of atoms because of strong Coulomb b inding and small mass. Signatures of exciton condensation have been reported in double quantum wells1-4, microcavities5, graphene6, and transition metal dichalcogenides7. Nonetheless, transport of exciton condensates is not yet understood and it is unclear whether an exciton condensate is a superfluid8,9 or an insulating electronic crystal10,11. Topological insulators (TIs) with massless particles and unique spin textures12 have been theoretically predicted13 as a promising platform for achieving exciton condensation. Here we report experimental evidence of excitonic superfluid phase on the surface of three-dimensional (3D) TIs. We unambiguously confirmed that electrons and holes are paired into charge neutral bound states by the electric field independent photocurrent distributions. And we observed a millimetre-long transport distance of these excitons up to 40 K, which strongly suggests dissipationless propagation. The robust macroscopic quantum states achieved with simple device architecture and broadband photoexcitation at relatively high temperature are expected to find novel applications in quantum computations and spintronics.
While the Hubbard model is the standard model to study Mott metal-insulator transitions, it is still unclear to which extent it can describe metal-insulator transitions in real solids, where non-local Coulomb interactions are always present. By using a variational principle, we clarify this issue for short- and long-ranged non-local Coulomb interactions for half-filled systems on bipartite lattices. We find that repulsive non-local interactions generally stabilize the Fermi-liquid regime. The metal-insulator phase boundary is shifted to larger interaction strengths to leading order linearly with non-local interactions. Importantly, non-local interactions can raise the order of the metal-insulator transition. We present a detailed analysis of how the dimension and geometry of the lattice as well as the temperature determine the critical non-local interaction leading to a first-order transition: for systems in more than two dimensions with non-zero density of states at the Fermi energy the critical non-local interaction is arbitrarily small; otherwise it is finite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا