ﻻ يوجد ملخص باللغة العربية
The nonequilibrium excitonic insulator (NEQ-EI) is an excited state of matter characterized by a finite density of coherent excitons and a time-dependent macroscopic polarization. The stability of this exciton superfluid as the density grows is jeopardized by the increased screening efficiency of the looser excitons. In this work we put forward a Hartree plus Screened Exchange HSEX scheme to predict the critical density at which the transition toward a free electron-hole plasma occurs. The dielectric function is calculated self-consistently using the NEQ-EI polarization and found to vanish in the long-wavelength limit. This property makes the exciton superfluid stable up to relatively high densities. Numerical results for the MoS$_{2}$ monolayers indicate that the NEQ-EI phase survives up to densities of the order of $10^{12}mathrm{cm}^{-2}$.
We show that in order to describe the isotropic-nematic transition in stripe forming systems with isotropic competing interactions of the Brazovskii class it is necessary to consider the next to leading order in a 1/N approximation for the effective
Spin accumulation in a paramagnetic semiconductor due to voltage-biased current tunneling from a polarized ferromagnet is experimentally manifest as a small additional spin-dependent resistance. We describe a rigorous model incorporating the necessar
The interplay between topology and correlations can generate a variety of unusual quantum phases, many of which remain to be explored. Recent advances have identified monolayer WTe2 as a promising material for exploring such interplay in a highly tun
Excitons are spin integer particles that are predicted to condense into a coherent quantum state at sufficiently low temperature, and exciton condensates can be realized at much higher temperature than condensates of atoms because of strong Coulomb b
While the Hubbard model is the standard model to study Mott metal-insulator transitions, it is still unclear to which extent it can describe metal-insulator transitions in real solids, where non-local Coulomb interactions are always present. By using