ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergence of excitonic superfluid at topological-insulator surfaces

111   0   0.0 ( 0 )
 نشر من قبل Dong Yu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Excitons are spin integer particles that are predicted to condense into a coherent quantum state at sufficiently low temperature, and exciton condensates can be realized at much higher temperature than condensates of atoms because of strong Coulomb binding and small mass. Signatures of exciton condensation have been reported in double quantum wells1-4, microcavities5, graphene6, and transition metal dichalcogenides7. Nonetheless, transport of exciton condensates is not yet understood and it is unclear whether an exciton condensate is a superfluid8,9 or an insulating electronic crystal10,11. Topological insulators (TIs) with massless particles and unique spin textures12 have been theoretically predicted13 as a promising platform for achieving exciton condensation. Here we report experimental evidence of excitonic superfluid phase on the surface of three-dimensional (3D) TIs. We unambiguously confirmed that electrons and holes are paired into charge neutral bound states by the electric field independent photocurrent distributions. And we observed a millimetre-long transport distance of these excitons up to 40 K, which strongly suggests dissipationless propagation. The robust macroscopic quantum states achieved with simple device architecture and broadband photoexcitation at relatively high temperature are expected to find novel applications in quantum computations and spintronics.

قيم البحث

اقرأ أيضاً

Spin-momentum locking, a key property of the surface states of three-dimensional topological insulators (3DTIs), provides a new avenue for spintronics applications. One consequence of spin-momentum locking is the induction of surface spin accumulatio ns due to applied electric fields. In this work, we investigate the extraction of such electrically-induced spins from their host TI material into adjoining conventional, hence topologically trivial, materials that are commonly used in electronics devices. We focus on effective Hamiltonians for bismuth-based 3DTI materials in the ${rm Bi}_2{rm Se}_3$ family, and numerically explore the geometries for extracting current-induced spins from a TI surface. In particular, we consider a device geometry in which a side pocket is attached to various faces of a 3DTI quantum wire and show that it is possible to create current-induced spin accumulations in these topologically trivial side pockets. We further study how such spin extraction depends on geometry and material parameters, and find that electron-hole degrees of freedom can be utilized to control the polarization of the extracted spins by an applied gate voltage.
In a topological insulator (TI)/magnetic insulator (MI) hetero-structure, large spin-orbit coupling of the TI and inversion symmetry breaking at the interface could foster non-planar spin textures such as skyrmions at the interface. This is observed as topological Hall effect in a conventional Hall set-up. While this effect has been observed at the interface of TI/MI, where MI beholds perpendicular magnetic anisotropy, non-trivial spin-textures that develop in interfacial MI with in-plane magnetic anisotropy is under-reported. In this work, we study Bi$_2$Te$_3$/EuS hetero-structure using planar Hall effect (PHE). We observe planar topological Hall and spontaneous planar Hall features that are characteristic of non-trivial in-plane spin textures at the interface. We find that the latter is minimum when the current and magnetic field directions are aligned parallel, and maximum when they are aligned perpendicularly within the sample plane, which maybe attributed to the underlying planar anisotropy of the spin-texture. These results demonstrate the importance of PHE for sensitive detection and characterization of non-trivial magnetic phase that has evaded exploration in the TI/MI interface.
Two-dimensional topological insulators (TIs) host gapless helical edge states that are predicted to support a quantized two-terminal conductance. Quantization is protected by time-reversal symmetry, which forbids elastic backscattering. Paradoxically , the current-carrying state itself breaks the time-reversal symmetry that protects it. Here we show that the combination of electron-electron interactions and momentum-dependent spin polarization in helical edge states gives rise to feedback through which an applied current opens a gap in the edge state dispersion, thereby breaking the protection against elastic backscattering. Current-induced gap opening is manifested via a nonlinear contribution to the systems $I-V$ characteristic, which persists down to zero temperature. We discuss prospects for realizations in recently discovered large bulk band gap TIs, and an analogous current-induced gap opening mechanism for the surface states of three-dimensional TIs.
Spatially indirect excitons can be created when an electron and a hole, confined to separate layers of a double quantum well system, bind to form a composite Boson. Because there is no recombination pathway such excitons are long lived making them ac cessible to transport studies. Moreover, the ability to independently tune both the intralayer charge density and interlayer electron-hole separation provides the capability to reach the low-density, strongly interacting regime where a BEC-like phase transition into a superfluid ground state is anticipated. To date, transport signatures of the superfluid condensate phase have been seen only in quantum Hall bilayers composed of double well GaAs heterostructures. Here we report observation of the exciton condensate in the quantum Hall effect regime of double layer structures of bilayer graphene. Correlation between the layers is identified by quantized Hall drag appearing at matched layer densities, and the dissipationless nature of the phase is confirmed in the counterflow geometry. Independent tuning of the layer densities and interlayer bias reveals a selection rule involving both the orbital and valley quantum number between the symmetry-broken states of bilayer graphene and the condensate phase, while tuning the layer imbalance stabilizes the condensate to temperatures in excess of 4K. Our results establish bilayer graphene quantum wells as an ideal system in which to study the rich phase diagram of strongly interacting Bosonic particles in the solid state.
The interplay between topology and correlations can generate a variety of unusual quantum phases, many of which remain to be explored. Recent advances have identified monolayer WTe2 as a promising material for exploring such interplay in a highly tun able fashion. The ground state of this two-dimensional (2D) crystal can be electrostatically tuned from a quantum spin Hall insulator (QSHI) to a superconductor. However, much remains unknown about the nature of these ground states, including the gap-opening mechanism of the insulating state. Here we report systematic studies of the insulating phase in WTe2 monolayer and uncover evidence supporting that the QSHI is also an excitonic insulator (EI). An EI, arising from the spontaneous formation of electron-hole bound states (excitons), is a largely unexplored quantum phase to date, especially when it is topological. Our experiments on high-quality transport devices reveal the presence of an intrinsic insulating state at the charge neutrality point (CNP) in clean samples. The state exhibits both a strong sensitivity to the electric displacement field and a Hall anomaly that are consistent with the excitonic pairing. We further confirm the correlated nature of this charge-neutral insulator by tunneling spectroscopy. Our results support the existence of an EI phase in the clean limit and rule out alternative scenarios of a band insulator or a localized insulator. These observations lay the foundation for understanding a new class of correlated insulators with nontrivial topology and identify monolayer WTe2 as a promising candidate for exploring quantum phases of ground-state excitons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا