ﻻ يوجد ملخص باللغة العربية
One of the most important sources for future space-borne gravitational wave detectors such as TianQin and LISA is EMRI. It happens when a stellar orgin compact object orbiting around a massive black hole(MBH) in the center of galaxies and has many benefits in the study of astrophysics and fundamental theories. One of the most important objectives is to test the no-hair theorem by measuring the quadrupole moment of the MBH. This requires us to estimate the parameters of an EMRI system accurately enough, which means we also need an accurate waveform templet for this process. Based on the fast and fiducial augmented analytic kludge (AAK) waveform for the standard Kerr black hole, we develop a waveform model for a metric with non-Kerr quadrupole moment. We also analyze the accuracy of parameter estimation for different sources and detectors.
We investigate the interior Einsteins equations in the case of a static, axially symmetric, perfect fluid source. We present a particular line element that is specially suitable for the investigation of this type of interior gravitational fields. Ass
We have studied numerically the shadows of a non-Kerr rotating compact object with quadrupole mass moment, which belongs to Manko-Novikov family. The non-integrable photon motion caused by quadrupole mass moment affects sharply the shadow of the comp
The standard toolkit of operators to probe quanta of geometry in loop quantum gravity consists in area and volume operators as well as holonomy operators. New operators have been defined, in the U(N) framework for intertwiners, which allow to explore
In this paper we present an extensive analysis of the GW190521 gravitational wave event with the current (fourth) generation of phenomenological waveform models for binary black hole coalescences. GW190521 stands out from other events since only a fe
We introduce a new kludge scheme to model the dynamics of generic extreme mass-ratio inspirals (stellar compact objects spiraling into a spinning supermassive black hole) and to produce the gravitational waveforms that describe the gravitational-wave