ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaotic shadow of a non-Kerr rotating compact object with quadrupole mass moment

88   0   0.0 ( 0 )
 نشر من قبل Chen Songbai
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied numerically the shadows of a non-Kerr rotating compact object with quadrupole mass moment, which belongs to Manko-Novikov family. The non-integrable photon motion caused by quadrupole mass moment affects sharply the shadow of the compact object. As the deviation parameter related to quadrupole mass moment is negative, the shadow of compact object is prolate and there are two disconnected main shadows with eyebrows located symmetrically on both sides of the equatorial plane. As the deviation parameter is positive, the shadow becomes oblate and the main shadow is joined together in the equatorial plane. Moreover, in this positive cases, there is a disorder region in the left of shadow which increases with the quadrupole-deviation parameter. Interestingly, we also find that Einstein ring is broken as the deviation from Kerr metric is larger than a certain critical value. This critical value decreases with the rotation parameter of black hole. Especially, the observer on the direction of rotation axis will find some concentric bright rings in the black disc. Finally, supposing that the gravitational field of the supermassive central object of the galaxy described by this metric, we estimated the numerical values of the observables for the black hole shadow.

قيم البحث

اقرأ أيضاً

Context. The Event Horizon Telescope (EHT) collaboration recently obtained first images of the surroundings of the supermassive compact object M87* at the center of the galaxy M87. Aims. We want to develop a simple analytic disk model for the accreti on flow of M87*. Compared to general-relativistic magnetohydrodynamic (GRMHD) models, it has the advantage of being independent of the turbulent character of the flow, and controlled by only few easy-to-interpret, physically meaningful parameters. We want to use this model to predict the image of M87* assuming that it is either a Kerr black hole, or an alternative compact object. Methods. We compute the synchrotron emission from the disk model and propagate the resulting light rays to the far-away observer by means of relativistic ray tracing. Such computations are performed assuming different spacetimes (Kerr, Minkowski, non-rotating ultracompact star, rotating boson star or Lamy spinning wormhole). We perform numerical fits of these models to the EHT data. Results. We discuss the highly-lensed features of Kerr images and show that they are intrinsically linked to the accretion-flow properties, and not only to gravitation. This fact is illustrated by the notion of secondary ring that we introduce. Our model of spinning Kerr black hole predicts mass and orientation consistent with the EHT interpretation. The non-Kerr images result in similar quality of the numerical fits and may appear very similar to Kerr images, once blurred to the EHT resolution. This implies that a strong test of the Kerr spacetime may be out of reach with the current data. We notice that future developments of the EHT could alter this situation. Conclusions. Our results show the importance of studying alternatives to the Kerr spacetime in order to be able to test the Kerr paradigm unambiguously.
We obtain the shadow cast induced by the rotating black hole with an anisotropic matter. A Killing tensor representing the hidden symmetry is derived explicitly. The existence of separability structure implies a complete integrability of the geodesic motion. We analyze an effective potential around the unstable circular photon orbits to show that one side of the black hole is brighter than the other side. Further, it is shown that the inclusion of the anisotropic matter ($Kr^{2(1-w)}$) has an effect on the observables of the shadow cast. The shadow observables include approximate shadow radius $R_s$, distortion parameter $delta_s$, area of the shadow $A_s$, and oblateness $D_{os}$.
We present the shape of the black hole shadow on the standard background screen as it is registered by the distant observer. The screen is an infinite plane, emitting the quanta uniformly distributed to a hemisphere. The source of emission is conside red to be optically thin and optically thick. It is shown that the shape of a black hole shadow depends crucially on the angle between the plane and the view line to the distant observer. The shadow shapes for the different values of this angle are also presented. Both Schwarzschild and Kerr metrics are considered.
We investigate the interior Einsteins equations in the case of a static, axially symmetric, perfect fluid source. We present a particular line element that is specially suitable for the investigation of this type of interior gravitational fields. Ass uming that the deviation from spherically symmetry is small, we linearize the corresponding field equations and find several classes of vacuum and perfect fluid solutions. We find physically meaninful spacetimes by imposing appropriate matching conditions.
We consider the circular motion of test particles in the gravitational field of a static and axially-symmetric compact object described by the $q$-metric. To this end, we calculate orbital parameters of test particles on accretion disks such as angul ar velocity ($Omega$), total energy ($E$), angular momentum ($L$), and radius of the innermost stable circular orbit ($r_{ISCO}$) as functions of the mass ($m$) and quadrupole ($q$) parameters of the source. The radiative flux, differential, and spectral luminosity of the accretion disk, which are quantities that can be experimentally measured, are then explored in detail. The obtained results are compared with the corresponding ones for the Schwarzschild and Kerr black holes in order to establish whether black holes may be distinguished from the $q$-metric via observations of the accretion disks spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا