ﻻ يوجد ملخص باللغة العربية
Ultrafast measurement technology provides essential contributions to our microscopic understanding of the properties and functions of solids and nanostructures. Atomic-scale vistas with ever-growing spatial and temporal resolution are offered by methods based on short pulses of x-rays and electrons. Time-resolved electron diffraction and microscopy are among the most powerful approaches to investigate non-equilibrium structural dynamics in excited matter. In this article, we discuss recent advances in ultrafast electron imaging enabled by significant improvements in the coherence of pulsed electron beams. Specifically, we review the development and first application of Ultrafast Low-Energy Electron Diffraction (ULEED) for the study of structural dynamics at surfaces, and discuss novel opportunities of Ultrafast Transmission Electron Microscopy (UTEM) facilitated by laser-triggered field emission sources. These and further developments will render coherent electron beams an essential component in the future of ultrafast nanoscale imaging.
We propose a new scenario to apply IR-pump-XUV-probe schemes to resolving strong field ionization induced and attosecond pulse driven electron-hole dynamics and coherence in real time. The coherent driving of both the infrared laser and the attoscond
We utilize coherent femtosecond extreme ultraviolet (EUV) pulses derived from a free electron laser (FEL) to generate transient periodic magnetization patterns with periods as short as 44 nm. Combining spatially periodic excitation with resonant prob
Spin-dependent photon echoes in combination with pump-probe Kerr rotation are used to study the microscopic electron spin transport in a CdTe/(Cd,Mg)Te quantum well in the hopping regime. We demonstrate that independent of the particular spin relaxat
We demonstrate the detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction and revealed by the band-to-band photoluminescence (PL) in zero external magnetic field. On the base of a pump-probe PL experiment we mea
Conduction Electron Spin Resonance (CESR) was measured on a thick slab of CaC6 in the normal and superconducting state. A surprising increase of the CESR intensity below Tc can not be explained by the theoretically predicted change in spin susceptibi