ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong-field ionization inducing multi-electron-hole coherence probed by attosecond pulses

106   0   0.0 ( 0 )
 نشر من قبل Zengxiu Zhao
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new scenario to apply IR-pump-XUV-probe schemes to resolving strong field ionization induced and attosecond pulse driven electron-hole dynamics and coherence in real time. The coherent driving of both the infrared laser and the attoscond pulse correlates the dynamics of the core-hole and the valence-hole which leads to the otherwise forbidden absorption and emission of XUV photon. An analytical model is developed based on the strong-field approximation by taking into account of the essential multielectron configurations. The emission spectra from the core-valence transition and the core-hole recombination are found modulating strongly as functions of the time delay between the two pulses, which provides a unique insight into the instantaneous ionization and the interplay of the multi-electron-hole coherence.



قيم البحث

اقرأ أيضاً

Ultrafast measurement technology provides essential contributions to our microscopic understanding of the properties and functions of solids and nanostructures. Atomic-scale vistas with ever-growing spatial and temporal resolution are offered by meth ods based on short pulses of x-rays and electrons. Time-resolved electron diffraction and microscopy are among the most powerful approaches to investigate non-equilibrium structural dynamics in excited matter. In this article, we discuss recent advances in ultrafast electron imaging enabled by significant improvements in the coherence of pulsed electron beams. Specifically, we review the development and first application of Ultrafast Low-Energy Electron Diffraction (ULEED) for the study of structural dynamics at surfaces, and discuss novel opportunities of Ultrafast Transmission Electron Microscopy (UTEM) facilitated by laser-triggered field emission sources. These and further developments will render coherent electron beams an essential component in the future of ultrafast nanoscale imaging.
We investigate the role of electron correlation in the two-photon double ionization of helium for ultrashort XUV pulses with durations ranging from a hundred attoseconds to a few femtoseconds. We perform time-dependent ab initio calculations for puls es with mean frequencies in the so-called sequential regime (photon energy above 54.4 eV). Electron correlation induced by the time correlation between emission events manifests itself in the angular distribution of the ejected electrons, which strongly depends on the energy sharing between them. We show that for ultrashort pulses two-photon double ionization probabilities scale non-uniformly with pulse duration depending on the energy sharing between the electrons. Most interestingly we find evidence for an interference between direct (nonsequential) and indirect (sequential) double photo-ionization with intermediate shake-up states, the strength of which is controlled by the pulse duration. This observation may provide a route toward measuring the pulse duration of FEL pulses.
Multi-electron dynamics in atoms and molecules very often occur on sub- to few-femtosecond timescales. The available intensities of extreme-ultraviolet (XUV) attosecond pulses have previously only allowed the time-resolved investigation of two-photon , two-electron interactions. Here we demonstrate attosecond control over double and triple ionization of argon atoms involving the absorption of up to five XUV photons. In an XUV-pump XUV-probe measurement using a pair of attosecond pulse trains (APTs), the Ar$^{2+}$ ion yield exhibits a weak delay dependence, showing that its generation predominantly results from the sequential emission of two electrons by photoabsorption from the two APTs. In contrast, the Ar$^{3+}$ ion yield exhibits strong modulations as a function of the delay, which is a clear signature of the simultaneous absorption of at least two XUV photons. The experimental results are well reproduced by numerical calculations that provide detailed insights into the ionization dynamics. Our results open up new opportunities for the investigation and control of multi-electron dynamics and complex electron correlation mechanisms on extremely short timescales.
Ionization with ultrashort pulses in the extreme ultraviolet (XUV) regime can be used to prepare an ion in a superposition of spin--orbit substates. In this work, we study the coherence properties of such a superposition, created by ionizing xenon at oms using two phase-locked XUV pulses at different frequencies. In general, if the duration of the driving pulse exceeds the quantum beat period, dephasing will occur. If however, the frequency difference of the two pulses matches the spin--orbit splitting, the coherence can be efficiently increased and dephasing does not occur.
We report on the observation of discrete structures in the electron energy distribution for strong field double ionization of Argon at 394 nm. The experimental conditions were chosen in order to ensure a non-sequential ejection of both electrons with an intermediate rescattering step. We have found discrete ATI (above-threshold ionization) like peaks in the sum energy of both electrons, as predicted by all quantum mechanical calculations. More surprisingly however is the observation of two ATI combs in the energy distribution of the individual electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا