ﻻ يوجد ملخص باللغة العربية
Fluoroscopy is a radiographic procedure for evaluating esophageal disorders such as achalasia, dysphasia and gastroesophageal reflux disease (GERD). It performs dynamic imaging of the swallowing process and provides anatomical detail and a qualitative idea of how well swallowed fluid is transported through the esophagus. In this work, we present a method called mechanics informed fluoroscopy (FluoroMech) that derives patient-specific quantitative information about esophageal function. FluoroMech uses a Convolutional Neural Network to perform segmentation of image sequences generated from the fluoroscopy, and the segmented images become input to a one-dimensional model that predicts the flow rate and pressure distribution in fluid transported through the esophagus. We have extended this model by developing a FluoroMech reference model to identify and estimate potential physiomarkers such as esophageal wall stiffness and active relaxation ahead of the peristaltic wave in the esophageal musculature. FluoroMech requires minimal computational time, and hence can potentially be applied clinically in the diagnosis of esophageal disorders.
In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structures, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal
Machine learning-based approaches outperform competing methods in most disciplines relevant to diagnostic radiology. Interventional radiology, however, has not yet benefited substantially from the advent of deep learning, in particular because of two
Numerical models are increasingly used for non-invasive diagnosis and treatment planning in coronary artery disease, where service-based technologies have proven successful in identifying hemodynamically significant and hence potentially dangerous va
Despite the significant progress over the last 50 years in simulating flow problems using numerical discretization of the Navier-Stokes equations (NSE), we still cannot incorporate seamlessly noisy data into existing algorithms, mesh-generation is co
Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as poin