ترغب بنشر مسار تعليمي؟ اضغط هنا

DeepDRR -- A Catalyst for Machine Learning in Fluoroscopy-guided Procedures

57   0   0.0 ( 0 )
 نشر من قبل Mathias Unberath
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine learning-based approaches outperform competing methods in most disciplines relevant to diagnostic radiology. Interventional radiology, however, has not yet benefited substantially from the advent of deep learning, in particular because of two reasons: 1) Most images acquired during the procedure are never archived and are thus not available for learning, and 2) even if they were available, annotations would be a severe challenge due to the vast amounts of data. When considering fluoroscopy-guided procedures, an interesting alternative to true interventional fluoroscopy is in silico simulation of the procedure from 3D diagnostic CT. In this case, labeling is comparably easy and potentially readily available, yet, the appropriateness of resulting synthetic data is dependent on the forward model. In this work, we propose DeepDRR, a framework for fast and realistic simulation of fluoroscopy and digital radiography from CT scans, tightly integrated with the software platforms native to deep learning. We use machine learning for material decomposition and scatter estimation in 3D and 2D, respectively, combined with analytic forward projection and noise injection to achieve the required performance. On the example of anatomical landmark detection in X-ray images of the pelvis, we demonstrate that machine learning models trained on DeepDRRs generalize to unseen clinically acquired data without the need for re-training or domain adaptation. Our results are promising and promote the establishment of machine learning in fluoroscopy-guided procedures.

قيم البحث

اقرأ أيضاً

Neurodegenerative diseases are frequently associated with structural changes in the brain. Magnetic Resonance Imaging (MRI) scans can show these variations and therefore be used as a supportive feature for a number of neurodegenerative diseases. The hippocampus has been known to be a biomarker for Alzheimer disease and other neurological and psychiatric diseases. However, it requires accurate, robust and reproducible delineation of hippocampal structures. Fully automatic methods are usually the voxel based approach, for each voxel a number of local features were calculated. In this paper we compared four different techniques for feature selection from a set of 315 features extracted for each voxel: (i) filter method based on the Kolmogorov-Smirnov test; two wrapper methods, respectively, (ii) Sequential Forward Selection and (iii) Sequential Backward Elimination; and (iv) embedded method based on the Random Forest Classifier on a set of 10 T1-weighted brain MRIs and tested on an independent set of 25 subjects. The resulting segmentations were compared with manual reference labelling. By using only 23 features for each voxel (sequential backward elimination) we obtained comparable state of-the-art performances with respect to the standard tool FreeSurfer.
Fluoroscopy is a radiographic procedure for evaluating esophageal disorders such as achalasia, dysphasia and gastroesophageal reflux disease (GERD). It performs dynamic imaging of the swallowing process and provides anatomical detail and a qualitativ e idea of how well swallowed fluid is transported through the esophagus. In this work, we present a method called mechanics informed fluoroscopy (FluoroMech) that derives patient-specific quantitative information about esophageal function. FluoroMech uses a Convolutional Neural Network to perform segmentation of image sequences generated from the fluoroscopy, and the segmented images become input to a one-dimensional model that predicts the flow rate and pressure distribution in fluid transported through the esophagus. We have extended this model by developing a FluoroMech reference model to identify and estimate potential physiomarkers such as esophageal wall stiffness and active relaxation ahead of the peristaltic wave in the esophageal musculature. FluoroMech requires minimal computational time, and hence can potentially be applied clinically in the diagnosis of esophageal disorders.
145 - Joseph Scott , Maysum Panju , 2020
We introduce Logic Guided Machine Learning (LGML), a novel approach that symbiotically combines machine learning (ML) and logic solvers with the goal of learning mathematical functions from data. LGML consists of two phases, namely a learning-phase a nd a logic-phase with a corrective feedback loop, such that, the learning-phase learns symbolic expressions from input data, and the logic-phase cross verifies the consistency of the learned expression with known auxiliary truths. If inconsistent, the logic-phase feeds back counterexamples to the learning-phase. This process is repeated until the learned expression is consistent with auxiliary truth. Using LGML, we were able to learn expressions that correspond to the Pythagorean theorem and the sine function, with several orders of magnitude improvements in data efficiency compared to an approach based on an out-of-the-box multi-layered perceptron (MLP).
The next great leap toward improving treatment of cancer with radiation will require the combined use of online adaptive and magnetic resonance guided radiation therapy techniques with automatic X-ray beam orientation selection. Unfortunately, by uni ting these advancements, we are met with a substantial expansion in the required dose information and consequential increase to the overall computational time imposed during radiation treatment planning, which cannot be handled by existing techniques for accelerating Monte Carlo dose calculation. We propose a deep convolutional neural network approach that unlocks new levels of acceleration and accuracy with regards to post-processed Monte Carlo dose results by relying on data-driven learned representations of low-level beamlet dose distributions instead of more limited filter-based denoising techniques that only utilize the information in a single dose input. Our method uses parallel UNET branches acting on three input channels before mixing latent understanding to produce noise-free dose predictions. Our model achieves a normalized mean absolute error of only 0.106% compared with the ground truth dose contrasting the 25.7% error of the under sampled MC dose fed into the network at prediction time. Our models per-beamlet prediction time is ~220ms, including Monte Carlo simulation and network prediction, with substantial additional acceleration expected from batched processing and combination with existing Monte Carlo acceleration techniques. Our method shows promise toward enabling clinical practice of advanced treatment technologies.
73 - Mircea Trofin 2021
Leveraging machine-learning (ML) techniques for compiler optimizations has been widely studied and explored in academia. However, the adoption of ML in general-purpose, industry strength compilers has yet to happen. We propose MLGO, a framework for i ntegrating ML techniques systematically in an industrial compiler -- LLVM. As a case study, we present the details and results of replacing the heuristics-based inlining-for-size optimization in LLVM with machine learned models. To the best of our knowledge, this work is the first full integration of ML in a complex compiler pass in a real-world setting. It is available in the main LLVM repository. We use two different ML algorithms: Policy Gradient and Evolution Strategies, to train the inlining-for-size model, and achieve up to 7% size reduction, when compared to state of the art LLVM -Oz. The same model, trained on one corpus, generalizes well to a diversity of real-world targets, as well as to the same set of targets after months of active development. This property of the trained models is beneficial to deploy ML techniques in real-world settings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا