ﻻ يوجد ملخص باللغة العربية
With the increasing rise of publicly available high level quantum computing languages, the field of Quantum Computing has reached an important milestone of separation of software from hardware. Consequently, the study of Quantum Algorithms is beginning to emerge as university courses and disciplines around the world, spanning physics, math, and computer science departments alike. As a continuation to its predecessor: Introduction to Coding Quantum Algorithms: A Tutorial Series Using Qiskit, this tutorial series aims to help understand several of the most promising quantum algorithms to date, including Phase Estimation, Shors, QAOA, VQE, and several others. Accompanying each algorithms theoretical foundations are coding examples utilizing IBMs Qiskit, demonstrating the strengths and challenges of implementing each algorithm in gate-based quantum computing.
The quantum circuit model is an abstraction that hides the underlying physical implementation of gates and measurements on a quantum computer. For precise control of real quantum hardware, the ability to execute pulse and readout-level instructions i
The curvelet transform is a directional wavelet transform over R^n, which is used to analyze functions that have singularities along smooth surfaces (Candes and Donoho, 2002). I demonstrate how this can lead to new quantum algorithms. I give an effic
Over the past years, machine learning has emerged as a powerful computational tool to tackle complex problems over a broad range of scientific disciplines. In particular, artificial neural networks have been successfully deployed to mitigate the expo
In this tutorial, we introduce basic conceptual elements to understand and build a gate-based superconducting quantum computing system.
Logical entropy gives a measure, in the sense of measure theory, of the distinctions of a given partition of a set, an idea that can be naturally generalized to classical probability distributions. Here, we analyze how fundamental concepts of this en