ﻻ يوجد ملخص باللغة العربية
The quantum circuit model is an abstraction that hides the underlying physical implementation of gates and measurements on a quantum computer. For precise control of real quantum hardware, the ability to execute pulse and readout-level instructions is required. To that end, we introduce Qiskit Pulse, a pulse-level programming paradigm implemented as a module within Qiskit-Terra cite{Qiskit}. To demonstrate the capabilities of Qiskit Pulse, we calibrate both un-echoed and echoed variants of the cross-resonance entangling gate with a pair of qubits on an IBM Quantum system accessible through the cloud. We perform Hamiltonian characterization of both single and two-pulse variants of the cross-resonance entangling gate with varying amplitudes on a cloud-based IBM Quantum system. We then transform these calibrated sequences into a high-fidelity CNOT gate by applying pre and post local-rotations to the qubits, achieving average gate fidelities of $F=0.981$ and $F=0.979$ for the un-echoed and echoed respectively. This is comparable to the standard backend CNOT fidelity of $F_{CX}=0.984$. Furthermore, to illustrate how users can access their results at different levels of the readout chain, we build a custom discriminator to investigate qubit readout correlations. Qiskit Pulse allows users to explore advanced control schemes such as optimal control theory, dynamical decoupling, and error mitigation that are not available within the circuit model.
Current quantum devices suffer from the rapid accumulation of error that prevents the storage of quantum information over extended periods. The unintentional coupling of qubits to their environment and each other adds significant noise to computation
This article introduces quantum computation by analogy with probabilistic computation. A basic description of the quantum search algorithm is given by representing the algorithm as a C program in a novel way.
We develop a classical bit-flip correction method to mitigate measurement errors on quantum computers. This method can be applied to any operator, any number of qubits, and any realistic bit-flip probability. We first demonstrate the successful perfo
The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from e
We present a collection of results about the clock in Feynmans computer construction and Kitaevs Local Hamiltonian problem. First, by analyzing the spectra of quantum walks on a line with varying endpoint terms, we find a better lower bound on the ga