ﻻ يوجد ملخص باللغة العربية
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated convolutions in the backbone networks to extract high-resolution feature maps for achieving high-performance segmentation performance. However, due to many convolution operations are conducted on the high-resolution feature maps, such dilatedFCN-based methods result in large computational complexity and memory consumption. To balance the performance and efficiency, there also exist encoder-decoder structures that gradually recover the spatial information by combining multi-level feature maps from the encoder. However, the performances of existing encoder-decoder methods are far from comparable with the dilatedFCN-based methods. In this paper, we propose the EfficientFCN, whose backbone is a common ImageNet pre-trained network without any dilated convolution. A holistically-guided decoder is introduced to obtain the high-resolution semantic-rich feature maps via the multi-scale features from the encoder. The decoding task is converted to novel codebook generation and codeword assembly task, which takes advantages of the high-level and low-level features from the encoder. Such a framework achieves comparable or even better performance than state-of-the-art methods with only 1/3 of the computational cost. Extensive experiments on PASCAL Context, PASCAL VOC, ADE20K validate the effectiveness of the proposed EfficientFCN.
Both high-level and high-resolution feature representations are of great importance in various visual understanding tasks. To acquire high-resolution feature maps with high-level semantic information, one common strategy is to adopt dilated convoluti
Recent works have achieved great success in improving the performance of multiple computer vision tasks by capturing features with a high channel number utilizing deep neural networks. However, many channels of extracted features are not discriminati
The way features propagate in Fully Convolutional Networks is of momentous importance to capture multi-scale contexts for obtaining precise segmentation masks. This paper proposes a novel series-parallel hybrid paradigm called the Chained Context Agg
Contrastive learning has shown superior performance in embedding global and spatial invariant features in computer vision (e.g., image classification). However, its overall success of embedding local and spatial variant features is still limited, esp
Pixel-wise clean annotation is necessary for fully-supervised semantic segmentation, which is laborious and expensive to obtain. In this paper, we propose a weakly supervised 2D semantic segmentation model by incorporating sparse bounding box labels