ﻻ يوجد ملخص باللغة العربية
Recent works have achieved great success in improving the performance of multiple computer vision tasks by capturing features with a high channel number utilizing deep neural networks. However, many channels of extracted features are not discriminative and contain a lot of redundant information. In this paper, we address above issue by introducing the Distance Guided Channel Weighting (DGCW) Module. The DGCW module is constructed in a pixel-wise context extraction manner, which enhances the discriminativeness of features by weighting different channels of each pixels feature vector when modeling its relationship with other pixels. It can make full use of the high-discriminative information while ignore the low-discriminative information containing in feature maps, as well as capture the long-range dependencies. Furthermore, by incorporating the DGCW module with a baseline segmentation network, we propose the Distance Guided Channel Weighting Network (DGCWNet). We conduct extensive experiments to demonstrate the effectiveness of DGCWNet. In particular, it achieves 81.6% mIoU on Cityscapes with only fine annotated data for training, and also gains satisfactory performance on another two semantic segmentation datasets, i.e. Pascal Context and ADE20K. Code will be available soon at https://github.com/LanyunZhu/DGCWNet.
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated convolutions in the backbone networks
The way features propagate in Fully Convolutional Networks is of momentous importance to capture multi-scale contexts for obtaining precise segmentation masks. This paper proposes a novel series-parallel hybrid paradigm called the Chained Context Agg
Contrastive learning has shown superior performance in embedding global and spatial invariant features in computer vision (e.g., image classification). However, its overall success of embedding local and spatial variant features is still limited, esp
Pixel-wise clean annotation is necessary for fully-supervised semantic segmentation, which is laborious and expensive to obtain. In this paper, we propose a weakly supervised 2D semantic segmentation model by incorporating sparse bounding box labels
Spatial and channel attentions, modelling the semantic interdependencies in spatial and channel dimensions respectively, have recently been widely used for semantic segmentation. However, computing spatial and channel attentions separately sometimes