ﻻ يوجد ملخص باللغة العربية
We have carried out a detailed analysis that compares steady state versus pulsed tokamak reactors. The motivations are as follows. Steady state current drive has turned out to be more difficult than expected - it takes too many watts to drive an Ampere, which has a negative effect on power balance and economics. This is partially compensated by the recent development of high temperature REBCO superconductors, which offers the promise of more compact, lower cost tokamak reactors, both steady state and pulsed. Of renewed interest is the reduction in size of pulsed reactors because of the possibility of higher field OH transformers for a given required pulse size. Our main conclusion is that pulsed reactors may indeed be competitive with steady state reactors and this issue should be re-examined with more detailed engineering level studies.
Since the signature of the ITER treaty in 2006, a new research programme targeting the emergence of a new generation of Neutral Beam (NB) system for the future fusion reactor (DEMO Tokamak) has been underway between several laboratories in Europe. Th
In the development of quantum microwave-to-optical (MO) converters, excessive noise induced by the parametric optical drive remains a major challenge at milli-Kelvin temperatures. Here we study the extraneous noise added to an electro-optic transduce
With the establishment of vanishing net electrostatic fields in a toroidally symmetric tokamak at equilibrium [R. W. Johnson, to appear in Phys. Rev. D], one is left needing an explanation for the measurement of an apparent radial electric field in e
On the basis of an analysis of the ITER L-mode energy confinement database, two new scaling expressions for tokamak L-mode energy confinement are proposed, namely a power law scaling and an offset-linear scaling. The analysis indicates that the prese
Uncertainties and errors in magnetic equilibrium reconstructions are a wide-spread problem in interpreting experimental data measured in the tokamak edge. This study demonstrates errors in EFIT++ reconstructions performed on the COMPASS tokamak by co