ترغب بنشر مسار تعليمي؟ اضغط هنا

Multipoint Bootstrap I: Light-Cone Snowflake OPE and the WL Origin

159   0   0.0 ( 0 )
 نشر من قبل Carlos Bercini
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We initiate an exploration of the conformal bootstrap for $n>4$ point correlation functions. Here we bootstrap correlation functions of the lightest scalar gauge invariant operators in planar non-abelian conformal gauge theories as their locations approach the cusps of a null polygon. For that we consider consistency of the OPE in the so-called snowflake channel with respect to cyclicity transformations which leave the null configuration invariant. For general non-abelian gauge theories this allows us to strongly constrain the OPE structure constants of up to three large spin $J_j$ operators (and large polarization quantum number $l_{j}$) to all loop orders. In $ mathcal{N}=4$ we fix them completely through the duality to null polygonal Wilson loops and the recent origin limit of the hexagon explored by Basso, Dixon and Papathanasiou.



قيم البحث

اقرأ أيضاً

114 - Yuya Kusuki 2018
The light cone OPE limit provides a significant amount of information regarding the conformal field theory (CFT), like the high-low temperature limit of the partition function. We started with the light cone bootstrap in the {it general} CFT ${}_2$ w ith $c>1$. For this purpose, we needed an explicit asymptotic form of the Virasoro conformal blocks in the limit $z to 1$, which was unknown until now. In this study, we computed it in general by studying the pole structure of the {it fusion matrix} (or the crossing kernel). Applying this result to the light cone bootstrap, we obtained the universal total twist (or equivalently, the universal binding energy) of two particles at a large angular momentum. In particular, we found that the total twist is saturated by the value $frac{c-1}{12}$ if the total Liouville momentum exceeds beyond the {it BTZ threshold}. This might be interpreted as a black hole formation in AdS${}_3$. As another application of our light cone singularity, we studied the dynamics of entanglement after a global quench and found a Renyi phase transition as the replica number was varied. We also investigated the dynamics of the 2nd Renyi entropy after a local quench. We also provide a universal form of the Regge limit of the Virasoro conformal blocks from the analysis of the light cone singularity. This Regge limit is related to the general $n$-th Renyi entropy after a local quench and out of time ordered correlators.
111 - Atanu Bhatta , Soham Ray 2019
We study the operator product expansion (OPE) of two identical scalar primary operators in the lightcone limit in a conformal field theory where a scalar is the operator with lowest twist. We see that in CFTs where both the stress tensor and a scalar are the lowest twist operators, the stress tensor contributes at the leading order in the lightcone OPE and the scalar contributes at the subleading order. We also see that there does not exist a scalar analogue of the average null energy condition (ANEC) for a CFT where a scalar is the lowest twist operator.
In this work we apply the lightcone bootstrap to a four-point function of scalars in two-dimensional conformal field theory. We include the entire Virasoro symmetry and consider non-rational theories with a gap in the spectrum from the vacuum and no conserved currents. For those theories, we compute the large dimension limit (h/c>>1) of the OPE spectral decomposition of the Virasoro vacuum. We then propose a kernel ansatz that generalizes the spectral decomposition beyond h/c>>1. Finally, we estimate the corrections to the OPE spectral densities from the inclusion of the lightest operator in the spectrum.
We derive a nonperturbative, convergent operator product expansion (OPE) for null-integrated operators on the same null plane in a CFT. The objects appearing in the expansion are light-ray operators, whose matrix elements can be computed by the gener alized Lorentzian inversion formula. For example, a product of average null energy (ANEC) operators has an expansion in the light-ray operators that appear in the stress-tensor OPE. An important application is to collider event shapes. The light-ray OPE gives a nonperturbative expansion for event shapes in special functions that we call celestial blocks. As an example, we apply the celestial block expansion to energy-energy correlators in N=4 Super Yang-Mills theory. Using known OPE data, we find perfect agreement with previous results both at weak and strong coupling, and make new predictions at weak coupling through 4 loops (NNNLO).
General principles of quantum field theory imply that there exists an operator product expansion (OPE) for Wightman functions in Minkowski momentum space that converges for arbitrary kinematics. This convergence is guaranteed to hold in the sense of a distribution, meaning that it holds for correlation functions smeared by smooth test functions. The conformal blocks for this OPE are conceptually extremely simple: they are products of 3-point functions. We construct the conformal blocks in 2-dimensional conformal field theory and show that the OPE in fact converges pointwise to an ordinary function in a specific kinematic region. Using microcausality, we also formulate a bootstrap equation directly in terms of momentum space Wightman functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا