ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric Inequalities for Anti-Blocking Bodies

160   0   0.0 ( 0 )
 نشر من قبل Raman Sanyal
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the class of (locally) anti-blocking bodies as well as some associated classes of convex bodies. For these bodies, we prove geometric inequalities regarding volumes and mixed volumes, including Godbersons conjecture, near-optimal bounds on Mahler volumes, Saint-Raymond-type inequalities on mixed volumes, and reverse Kleitman inequalities for mixed volumes. We apply our results to the combinatorics of posets and prove Sidorenko-type inequalities for linear extensions of pairs of 2-dimensional posets. The results rely on some elegant decompositions of differences of anti-blocking bodies, which turn out to hold for anti-blocking bodies with respect to general polyhedral cones.



قيم البحث

اقرأ أيضاً

152 - Semyon Alesker 2020
Very recently J. Kotrbaty has proven general inequalities for translation invariant smooth valuations formally analogous to the Hodge- Riemann bilinear relations in the Kahler geometry. The goal of this note is to apply Kotrbatys theorem to obtain a few apparently new inequalities for mixed volumes of convex bodies.
We investigate weighted floating bodies of polytopes. We show that the weighted volume depends on the complete flags of the polytope. This connection is obtained by introducing flag simplices, which translate between the metric and combinatorial stru cture. Our results are applied in spherical and hyperbolic space. This leads to new asymptotic results for polytopes in these spaces. We also provide explicit examples of spherical and hyperbolic convex bodies whose floating bodies behave completely different from any convex body in Euclidean space.
Inspired by the classical Riemannian systolic inequality of Gromov we present a combinatorial analogue providing a lower bound on the number of vertices of a simplicial complex in terms of its edge-path systole. Similarly to the Riemannian case, wher e the inequality holds under a topological assumption of ``essentiality, our proofs rely on a combinatorial analogue of that assumption. Under a stronger assumption, expressed in terms of cohomology cup-length, we improve our results quantitatively. We also illustrate our methods in the continuous setting, generalizing and improving quantitatively the Minkowski principle of Balacheff and Karam; a corollary of this result is the extension of the Guth--Nakamura cup-length systolic bound from manifolds to complexes.
118 - Alexey Balitskiy 2020
If a convex body $K subset mathbb{R}^n$ is covered by the union of convex bodies $C_1, ldots, C_N$, multiple subadditivity questions can be asked. Two classical results regard the subadditivity of the width (the smallest distance between two parallel hyperplanes that sandwich $K$) and the inradius (the largest radius of a ball contained in $K$): the sum of the widths of the $C_i$ is at least the width of $K$ (this is the plank theorem of Thoger Bang), and the sum of the inradii of the $C_i$ is at least the inradius of $K$ (this is due to Vladimir Kadets). We adapt the existing proofs of these results to prove a theorem on coverings by certain generalized non-convex multi-planks. One corollary of this approach is a family of inequalities interpolating between Bangs theorem and Kadetss theorem. Other corollaries include results reminiscent of the Davenport--Alexander problem, such as the following: if an $m$-slice pizza cutter (that is, the union of $m$ equiangular rays in the plane with the same endpoint) in applied $N$ times to the unit disk, then there will be a piece of the partition of inradius at least $frac{sin pi/m}{N + sin pi/m}$.
We define a set inner product to be a function on pairs of convex bodies which is symmetric, Minkowski linear in each dimension, positive definite, and satisfies the natural analogue of the Cauchy-Schwartz inequality (which is not implied by the othe r conditions). We show that any set inner product can be embedded into an inner product space on the associated support functions, thereby extending fundamental results of Hormander and Radstrom. The set inner product provides a geometry on the space of convex bodies. We explore some of the properties of that geometry, and discuss an application of these ideas to the reconstruction of ancestral ecological niches in evolutionary biology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا