ﻻ يوجد ملخص باللغة العربية
We study the class of (locally) anti-blocking bodies as well as some associated classes of convex bodies. For these bodies, we prove geometric inequalities regarding volumes and mixed volumes, including Godbersons conjecture, near-optimal bounds on Mahler volumes, Saint-Raymond-type inequalities on mixed volumes, and reverse Kleitman inequalities for mixed volumes. We apply our results to the combinatorics of posets and prove Sidorenko-type inequalities for linear extensions of pairs of 2-dimensional posets. The results rely on some elegant decompositions of differences of anti-blocking bodies, which turn out to hold for anti-blocking bodies with respect to general polyhedral cones.
Very recently J. Kotrbaty has proven general inequalities for translation invariant smooth valuations formally analogous to the Hodge- Riemann bilinear relations in the Kahler geometry. The goal of this note is to apply Kotrbatys theorem to obtain a
We investigate weighted floating bodies of polytopes. We show that the weighted volume depends on the complete flags of the polytope. This connection is obtained by introducing flag simplices, which translate between the metric and combinatorial stru
Inspired by the classical Riemannian systolic inequality of Gromov we present a combinatorial analogue providing a lower bound on the number of vertices of a simplicial complex in terms of its edge-path systole. Similarly to the Riemannian case, wher
If a convex body $K subset mathbb{R}^n$ is covered by the union of convex bodies $C_1, ldots, C_N$, multiple subadditivity questions can be asked. Two classical results regard the subadditivity of the width (the smallest distance between two parallel
We define a set inner product to be a function on pairs of convex bodies which is symmetric, Minkowski linear in each dimension, positive definite, and satisfies the natural analogue of the Cauchy-Schwartz inequality (which is not implied by the othe