ﻻ يوجد ملخص باللغة العربية
If a convex body $K subset mathbb{R}^n$ is covered by the union of convex bodies $C_1, ldots, C_N$, multiple subadditivity questions can be asked. Two classical results regard the subadditivity of the width (the smallest distance between two parallel hyperplanes that sandwich $K$) and the inradius (the largest radius of a ball contained in $K$): the sum of the widths of the $C_i$ is at least the width of $K$ (this is the plank theorem of Thoger Bang), and the sum of the inradii of the $C_i$ is at least the inradius of $K$ (this is due to Vladimir Kadets). We adapt the existing proofs of these results to prove a theorem on coverings by certain generalized non-convex multi-planks. One corollary of this approach is a family of inequalities interpolating between Bangs theorem and Kadetss theorem. Other corollaries include results reminiscent of the Davenport--Alexander problem, such as the following: if an $m$-slice pizza cutter (that is, the union of $m$ equiangular rays in the plane with the same endpoint) in applied $N$ times to the unit disk, then there will be a piece of the partition of inradius at least $frac{sin pi/m}{N + sin pi/m}$.
Inspired by the classical Riemannian systolic inequality of Gromov we present a combinatorial analogue providing a lower bound on the number of vertices of a simplicial complex in terms of its edge-path systole. Similarly to the Riemannian case, wher
We study the class of (locally) anti-blocking bodies as well as some associated classes of convex bodies. For these bodies, we prove geometric inequalities regarding volumes and mixed volumes, including Godbersons conjecture, near-optimal bounds on M
A well-known family of determinantal inequalities for mixed volumes of convex bodies were derived by Shephard from the Alexandrov-Fenchel inequality. The classic monograph Geometric Inequalities by Burago and Zalgaller states a conjecture on the vali
A Wasserstein spaces is a metric space of sufficiently concentrated probability measures over a general metric space. The main goal of this paper is to estimate the largeness of Wasserstein spaces, in a sense to be precised. In a first part, we gener
A 2-dimensional point-line framework is a collection of points and lines in the plane which are linked by pairwise constraints that fix some angles between pairs of lines and also some point-line and point-point distances. It is rigid if every contin