ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupled-cluster calculations of neutrinoless double-beta decay in $^{48}$Ca

310   0   0.0 ( 0 )
 نشر من قبل Samuel Novario
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use coupled-cluster theory and nuclear interactions from chiral effective field theory to compute the nuclear matrix element for the neutrinoless double-beta decay of $^{48}$Ca. Benchmarks with the no-core shell model in several light nuclei inform us about the accuracy of our approach. For $^{48}$Ca we find a relatively small matrix element. We also compute the nuclear matrix element for the two-neutrino double-beta decay of $^{48}$Ca with a quenching factor deduced from two-body currents in recent ab-initio calculation of the Ikeda sum-rule in $^{48}$Ca [Gysbers et al., Nature Physics 15, 428-431 (2019)].



قيم البحث

اقرأ أيضاً

$^{48}$Ca, the lightest double beta decay candidate, is the only one simple enough to be treated exactly in the nuclear shell model. Thus, the $betabeta(2 u)$ half-life measurement, reported here, provides a unique test of the nuclear physics involve d in the $betabeta$ matrix element calculation. Enriched $^{48}$Ca sources of two different thicknesses have been exposed in a time projection chamber, and yield T$_{1/2}^{2 u} = (4.3^{+2.4}_{-1.1} [{rm stat.}] pm 1.4 [{rm syst.}]) times 10^{19}$ years, compatible with the shell model calculations.
126 - J. M. Yao , B. Bally , J. Engel 2019
Working with Hamiltonians from chiral effective field theory, we develop a novel framework for describing arbitrary deformed medium-mass nuclei by combining the in-medium similarity renormalization group with the generator coordinate method. The appr oach leverages the ability of the first method to capture dynamic correlations and the second to include collective correlations without violating symmetries. We use our scheme to compute the matrix element that governs the neutrinoless double beta decay of $^{48}$Ca to $^{48}$Ti, and find it to have the value $0.61$, near or below the predictions of most phenomenological methods. The result opens the door to ab initio calculations of the matrix elements for the decay of heavier nuclei such as $^{76}$Ge, $^{130}$Te, and $^{136}$Xe.
Chemical isotope effects of calcium were studied by liquid-liquid extraction using a crown ether of dicyclohexano-18-crown-6 for the purpose of finding a cost-effective and efficient way of enrichment of Ca-48 towards the study of the neutrinoless do uble beta decay of Ca-48. We evaluated each contribution ratio of the field shift effect and the hyperfine splitting shift effect to the mass effect of the calcium isotopes for the first time. The present preliminary result suggests the contribution of the field shift effect is small, especially for Ca-40-Ca-48 case, compared with the case of Chromium trichloride-crown in which the isotope enrichment factors are strongly affected by the field shifts. These indications are promising towards the mass producion of enriched Ca-48 by the chemical separation method.
Neutrinoless double beta decay searches are currently among the major foci of experimental physics. The observation of such a decay will have important implications in our understanding of the intrinsic nature of neutrinos and shed light on the limit ations of the Standard Model. The rate of this process depends on both the unknown neutrino effective mass and the nuclear matrix element associated with the given neutrinoless double-beta decay transition. The latter can only be provided by theoretical calculations, hence the need of accurate theoretical predictions of the nuclear matrix element for the success of the experimental programs. This need drives the theoretical nuclear physics community to provide the most reliable calculations of the nuclear matrix elements. Among the various computational models adopted to solve the many-body nuclear problem, the shell model is widely considered as the basic framework of the microscopic description of the nucleus. Here, we review the most recent and advanced shell-model calculations of the nuclear matrix elements considering the light-neutrino-exchange channel for nuclei of experimental interest. We report the sensitivity of the theoretical calculations with respect to variations in the model spaces and the shell-model nuclear Hamiltonians.
We present the first ab initio calculations of neutrinoless double beta decay matrix elements in $A=6$-$12$ nuclei using Variational Monte Carlo wave functions obtained from the Argonne $v_{18}$ two-nucleon potential and Illinois-7 three-nucleon inte raction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we have also studied the impact of two-body short range correlations and the use of different forms for the transition operators, such as those corresponding to different orders in chiral effective theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا