ترغب بنشر مسار تعليمي؟ اضغط هنا

A Blockchain Transaction Graph based Machine Learning Method for Bitcoin Price Prediction

168   0   0.0 ( 0 )
 نشر من قبل Xiao Li
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Bitcoin, as one of the most popular cryptocurrency, is recently attracting much attention of investors. Bitcoin price prediction task is consequently a rising academic topic for providing valuable insights and suggestions. Existing bitcoin prediction works mostly base on trivial feature engineering, that manually designs features or factors from multiple areas, including Bticoin Blockchain information, finance and social media sentiments. The feature engineering not only requires much human effort, but the effectiveness of the intuitively designed features can not be guaranteed. In this paper, we aim to mining the abundant patterns encoded in bitcoin transactions, and propose k-order transaction graph to reveal patterns under different scope. We propose the transaction graph based feature to automatically encode the patterns. A novel prediction method is proposed to accept the features and make price prediction, which can take advantage from particular patterns from different history period. The results of comparison experiments demonstrate that the proposed method outperforms the most recent state-of-art methods.


قيم البحث

اقرأ أيضاً

Stock price prediction is a challenging task, but machine learning methods have recently been used successfully for this purpose. In this paper, we extract over 270 hand-crafted features (factors) inspired by technical and quantitative analysis and t ested their validity on short-term mid-price movement prediction. We focus on a wrapper feature selection method using entropy, least-mean squares, and linear discriminant analysis. We also build a new quantitative feature based on adaptive logistic regression for online learning, which is constantly selected first among the majority of the proposed feature selection methods. This study examines the best combination of features using high frequency limit order book data from Nasdaq Nordic. Our results suggest that sorting methods and classifiers can be used in such a way that one can reach the best performance with a combination of only very few advanced hand-crafted features.
166 - Liping Yang 2021
In recent years, Bitcoin price prediction has attracted the interest of researchers and investors. However, the accuracy of previous studies is not well enough. Machine learning and deep learning methods have been proved to have strong prediction abi lity in this area. This paper proposed a method combined with Ensemble Empirical Mode Decomposition (EEMD) and a deep learning method called long short-term memory (LSTM) to research the problem of next-day Bitcoin price forecast.
Mid-price movement prediction based on limit order book (LOB) data is a challenging task due to the complexity and dynamics of the LOB. So far, there have been very limited attempts for extracting relevant features based on LOB data. In this paper, w e address this problem by designing a new set of handcrafted features and performing an extensive experimental evaluation on both liquid and illiquid stocks. More specifically, we implement a new set of econometrical features that capture statistical properties of the underlying securities for the task of mid-price prediction. Moreover, we develop a new experimental protocol for online learning that treats the task as a multi-objective optimization problem and predicts i) the direction of the next price movement and ii) the number of order book events that occur until the change takes place. In order to predict the mid-price movement, the features are fed into nine different deep learning models based on multi-layer perceptrons (MLP), convolutional neural networks (CNN) and long short-term memory (LSTM) neural networks. The performance of the proposed method is then evaluated on liquid and illiquid stocks, which are based on TotalView-ITCH US and Nordic stocks, respectively. For some stocks, results suggest that the correct choice of a feature set and a model can lead to the successful prediction of how long it takes to have a stock price movement.
The majority of studies in the field of AI guided financial trading focus on purely applying machine learning algorithms to continuous historical price and technical analysis data. However, due to non-stationary and high volatile nature of Forex mark et most algorithms fail when put into real practice. We developed novel event-driven features which indicate a change of trend in direction. We then build long deep learning models to predict a retracement point providing a perfect entry point to gain maximum profit. We use a simple recurrent neural network (RNN) as our baseline model and compared with short-term memory (LSTM), bidirectional long short-term memory (BiLSTM) and gated recurrent unit (GRU). Our experiment results show that the proposed event-driven feature selection together with the proposed models can form a robust prediction system which supports accurate trading strategies with minimal risk. Our best model on 15-minutes interval data for the EUR/GBP currency achieved RME 0.006x10^(-3) , RMSE 2.407x10^(-3), MAE 1.708x10^(-3), MAPE 0.194% outperforming previous studies.
368 - Junran Wu , Ke Xu , Xueyuan Chen 2021
Great research efforts have been devoted to exploiting deep neural networks in stock prediction. While long-range dependencies and chaotic property are still two major issues that lower the performance of state-of-the-art deep learning models in fore casting future price trends. In this study, we propose a novel framework to address both issues. Specifically, in terms of transforming time series into complex networks, we convert market price series into graphs. Then, structural information, referring to associations among temporal points and the node weights, is extracted from the mapped graphs to resolve the problems regarding long-range dependencies and the chaotic property. We take graph embeddings to represent the associations among temporal points as the prediction model inputs. Node weights are used as a priori knowledge to enhance the learning of temporal attention. The effectiveness of our proposed framework is validated using real-world stock data, and our approach obtains the best performance among several state-of-the-art benchmarks. Moreover, in the conducted trading simulations, our framework further obtains the highest cumulative profits. Our results supplement the existing applications of complex network methods in the financial realm and provide insightful implications for investment applications regarding decision support in financial markets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا