ﻻ يوجد ملخص باللغة العربية
Neural processes (NPs) constitute a family of variational approximate models for stochastic processes with promising properties in computational efficiency and uncertainty quantification. These processes use neural networks with latent variable inputs to induce predictive distributions. However, the expressiveness of vanilla NPs is limited as they only use a global latent variable, while target specific local variation may be crucial sometimes. To address this challenge, we investigate NPs systematically and present a new variant of NP model that we call Doubly Stochastic Variational Neural Process (DSVNP). This model combines the global latent variable and local latent variables for prediction. We evaluate this model in several experiments, and our results demonstrate competitive prediction performance in multi-output regression and uncertainty estimation in classification.
Variational Bayes (VB) has been used to facilitate the calculation of the posterior distribution in the context of Bayesian inference of the parameters of nonlinear models from data. Previously an analytical formulation of VB has been derived for non
Stochastic variational inference allows for fast posterior inference in complex Bayesian models. However, the algorithm is prone to local optima which can make the quality of the posterior approximation sensitive to the choice of hyperparameters and
Item Response Theory (IRT) is a ubiquitous model for understanding human behaviors and attitudes based on their responses to questions. Large modern datasets offer opportunities to capture more nuances in human behavior, potentially improving psychom
A multi-layer deep Gaussian process (DGP) model is a hierarchical composition of GP models with a greater expressive power. Exact DGP inference is intractable, which has motivated the recent development of deterministic and stochastic approximation m
We address the problem of learning hierarchical deep neural network policies for reinforcement learning. In contrast to methods that explicitly restrict or cripple lower layers of a hierarchy to force them to use higher-level modulating signals, each